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Abstract Kirchhoff’s 1882 theory of optical diffraction forms the centerpiece in
the long-term development of wave optics, one that commenced in the 1820s when
Fresnel produced an empirically successful theory based on a reinterpretation of Huy-
gens’ principle, but without working from a wave equation. Then, in 1856, Stokes
demonstrated that the principle was derivable from such an equation albeit without
consideration of boundary conditions. Kirchhoff’s work a quarter century later marked
a crucial, and widely influential, point for he produced Fresnel’s results by means of
Green’s theorem and function under specific boundary conditions. In the late 1880s,
Poincaré uncovered an inconsistency between Kirchhoff’s conditions and his solution,
one that seemed to imply that waves should not exist at all. Researchers nevertheless
continued to use Kirchhoff’s theory—even though Rayleigh, and much later Sommer-
feld, developed a different and mathematically consistent formulation that, however,
did not match experimental data better than Kirchhoff’s theory. After all, Kirchhoff’s
formula worked quite well in a specific approximation regime. Finally, in 1964, Marc-
hand and Wolf employed the transformation of Kirchhoff’s surface integral that had
been developed by Maggi and Rubinowicz for other purposes. The result yielded
a consistent boundary condition that, while introducing a species of discontinuity,
nevertheless rescued the essential structure of Kirchhoff’s original formulation from
Poincaré’s paradox.
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1 Introduction

On 22 June 1882, the University of Berlin’s professor of theoretical physics, Gus-
tav Robert Kirchhoff (1824–1887), read an influential paper titled “Zur Theorie der
Lichtstrahlen” (“On the theory of light rays”) to a meeting of the Prussian Academy of
Sciences in Berlin. The purpose of the paper was to deduce from the wave equation the
expression governing the diffraction of light by an aperture on an otherwise opaque
screen. To do so Kirchhoff assumed a particular set of boundary conditions: namely,
that both the amplitude of the disturbance as well as its spatial gradient vanished on
the screen, but that they remained unaltered over the aperture itself.1 He was in this
way able to generate a solution for scalar diffraction that could yield the empirically-
successful (so far as was then known) expression that Augustin Fresnel (1788–1827)
had produced six decades before using an altogether different line of argument (on
which more below). Despite its frequent presence in physicists’ and engineers’ publi-
cations, Kirchhoff’s theory of diffraction has not until recently attracted the attention
of physics (or mathematics) historians for understandable reasons: historical focus has
principally aimed at episodes in nineteenth century physics that brought either funda-
mental changes—e.g. the wave theory of light, electromagnetic field theory, kinetic
theory and statistical mechanics—or influential technological breakthroughs—e.g.
Hertz’s production of electric waves and the subsequent invention of wireless telegra-
phy. Kirchhoff’s theory fits neither criterion. It did not introduce any novel physical
entities or mechanisms beyond what wave optics had stipulated; nor did it lead to
technological innovation. It nicely fits, one might say, Thomas Kuhn’s conception
of “normal science,” in which practitioners solve problems that arise within a given
system without violating its fundamental boundaries.2

Although Kirchhoff’s theory did not have significant ontological or technological
implications, it nonetheless raised important questions concerning the use of mathe-
matics in theoretical physics. What made the theory interesting in subsequent years

1 Kirchhoff (1882), also printed as Kirchhoff (1883). In this article, we use an English translation by
Hentschel and Zhu (forthcoming).
2 Kuhn (1962), pp. 10–34.
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is the mathematical inconsistency of the boundary conditions that were used. So far
as was known at the time, however, his solution worked quite well empirically, and
Kirchhoff himself never remarked the inconsistency. Decades after the French math-
ematician Henri Poincaré (1854–1912) published a deleterious consequence of the
inconsistency in 1892,3 the theory nevertheless continued to appear inmajor textbooks
and research periodicals in optics and electromagnetism. Physicists and engineers
treated it not as an antiquated and inconsistent effort to derive empirically workable
results, but as a good enough working model, for Kirchhoff’s solution nicely fit both
optical and microwave experimental data under particular, but commonly applica-
ble, conditions. Indeed, physicists’ and engineers’ interest in, and use of, Kirchhoff’s
theory has certainly not waned over the decades.4

The persistent deployment of an apparently inconsistent theory even after recogni-
tion of its flaws is not unique in the history of physics. The infamous divergence of the
quantum field integrals in self-energy calculations in quantum electrodynamics (QED)
and physicists’ various ad-hoc manipulations to bypass the problem before the intro-
duction of renormalization provides one noteworthy example.5 Another concerns early
twentieth century Cambridge mathematicians’ continued use of circulatory theory to
explain airfoil lifting despite a salient contradiction—namely, d’Alembert’s paradox,
according to which there should be no lift at all in a perfect fluid—that had been well
known for centuries.6 In these cases, a major reason for the tenacity of an admittedly
problematic theorywas essentially pragmatic: the physical-mathematical problemwas
simply too complex, and no comparable alternative was available at the time.

Despite the similarities, Kirchhoff’s account of diffraction differed in one essential
respect from these two examples that makes this situation particularly compelling. In
the first decades of the twentieth century, LordRayleigh (1842–1919) andArnoldSom-
merfeld (1868–1951) derived different solutions to the same diffraction problem under
a set of consistent boundary conditions. Unlike the cases of QED before renormaliza-
tion and the circulatory theory of airfoil lifting in the early twentieth century, therefore,
a mathematically consistent alternative was in fact available. Yet the existence of a
seemingly more appealing and logical alternative did not eliminate or marginalize
Kirchhoff’s theory. This mathematically inconsistent (and physically untenable) solu-
tion has continued to appear and thrive in textbooks and periodicals as the standard
approach to the problem of diffraction. Why, one may ask, did scientists continue to
stay with Kirchhoff’s theory despite the presence of a consistent alternative?

Recently, several historians and philosophers have begun to pay closer attention
to this curious episode.7 These studies deepen our understanding of conceptual and

3 Poincaré (1892b), pp. 187–188.
4 According to Werner Marx’s bibliometric analysis, Kirchhoff’s 1882 work from 1900 to 2010 has been
specifically cited 70 times in research articles; moreover, the citation count has increased over the years:
Marx (2016).
5 Schweber (1994)
6 Bloor (2011).
7 Klaus Hentschel, Ning Yan Zhu, Ann Hentschel, and Werner Marx have provided a comprehensive
historical study of Kirchhoff’s 1882 paper by translating it into English, presenting a commentary, situating
it within Kirchhoff’s intellectual biography, and conducting a scientometric analysis of citations to it:
Hentschel and Zhu (forthcoming). In light of the realism debate in philosophy of science, Juha Saatsi and
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technical aspects of Kirchhoff’s theory and help us clarify its philosophical implica-
tions, but in what follows we are concerned with the details of the theory’s persistence
and with the consistent alternatives to it. The theory’s empirical success within the
experimental regime of nineteenth and early twentieth century optics certainly goes
reasonably far in accounting for its persistence. More, however, was involved than the
results of experiment. The theory’s tenacity also reflects the hold of a long-standing
intellectual tradition in optics. Rooted in a principle introduced by Christiaan Huy-
gens (1629–1695) in 1678 and first deployed for diffraction by Fresnel in 1818, this
approach calculated wave intensity by means of a single integral over regions that are
not blocked by a diffracting object. Such an integral could be interpreted as comprised
ofwaves, or wavelets, that emanate from each of the points on the object’s open regions
and so on the incident wave front proper. Even after the scope of the inconsistency
became altogether clear, physicists continued to seek (and to find) a single integral
that could give physical meaning at least to a form of Huygens’ principle, if not to the
original, a principle that Kirchhoff’s theory so nicely exemplified. In what follows we
explore the structure of Kirchhoff’s theory and the alternatives to it in order to bring
out the several ways in which mathematical structures that exemplify principles akin
to Huygens’ generated theories of diffraction.

2 Fresnel applies Huygens’ principle to diffraction

When Fresnel first tackled the problem of diffraction neither he nor Thomas Young
(1773–1829) before him had deployed Huygens’ principle. Instead, both Young and
Fresnel initially considered interference to take place between rays of light emanating
directly from the source and from emission stimulated by the source at the edges of
diffracting objects. That way of thinking essentially conformed to a long-standing
tradition that only Huygens himself had challenged, one in which the central physical
entity in optics was the ray of light.8 Fresnel broke with that tradition and introduced
Huygens’ principlewhen confrontedwith an empirical conflict that arose in a particular
situation. But to deploy the principle Fresnel had to develop amethod for decomposing
waves from a multiplicity of different loci into ones with common phases but different
amplitudes. Such amethod had emerged previously in his exploration of the chromatic
effects generated by the passage of polarized light through thin, birefringent crystals.

To achieve that result Fresnel assumed a wave of the form a sin [2π( f t − x/λ)],
with λ the wavelength and f the frequency of the disturbance. If the wave emanat-
ing from the source reaches a point via two different paths, one of which traverses

Footnote 7 continued
Peter Vickers have used Kirchhoff’s theory as a counterexample to primitive realism—what they have
termed “naïve optimism”—which contends that any significant novel predictive success can be explained
by the truth content of the assumptions that play an essential role in the derivation. Kirchhoff’s boundary
conditions, Saatsi andVickers noted, are bothmathematically inconsistent andphysically untenable.Yet they
are essential assumptions for the derivation of Kirchhoff’s empirically-successful (within certain regimes)
formula (Saatsi and Vickers 2011). We thank Ning Yan Zhu for catching a number of misprints and missing
or incorrect references in a previous version of the present article.
8 On the history of Huygens’ optics and its background see Shapiro (1973). On Young see Kipnis (1991),
and on Fresnel see Buchwald (1989).
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Fig. 1 Fresnel’s configuration
for diffraction

a distance x while the other requires an additional distance d, then the latter will be
a sin [2π( f t − x/λ) − i] where i is 2πd/λ. Algebraically decomposing this expres-
sion, Fresnel could split the second wave into two parts:

a sin [2π( f t − x/λ) − i] = a cos(i) sin [2π( f t − x/λ)]

− a sin(i) cos [2π( f t − x/λ)]

That is, a single wave with arbitrary phase i can always be considered to arise from
two other waves with amplitudes acos(i), asin(i) that differ in phase by 90◦. This
involves the same kind of process, Fresnel noted, as the composition of two mutually-
perpendicular forces of magnitudes equal to the component amplitudes. Whence, he
concluded, the magnitude of the resultant of two waves with the same frequency that
otherwise differ in phase by 90◦ is just the square root of the sum of the squares of
the component amplitudes. This decomposition enabled the application of Huygens’
principle to diffraction.

Consider with Fresnel a point light source I , a semi-infinite plane obstacle AG
whose edge A is directly beneath I , and a screen parallel to AG. His objective was
to calculate the resultant wave at a point O on the screen but outside the shadow cast
by AG (Fig. 1). According to Huygens’ principle the wave intensity at O should be
the sum—or integral for an effectively continuous distribution—of all the wavelets
emanating from the front m′MmA, calculated as it passes the obstacle AG.

Fresnel assumed that the remainder of the wave was completely blocked by the
obstacle, that the obstacle neither modified the wave’s spherical shape, nor affected
the phase of the vibrations at any unblocked point of the front. Note that in so assuming
Fresnel essentially ignored the finite dimensions of such an obstacle in that he did not
separately consider what the wave front might be on the side of the obstacle facing
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the luminous point and on the side facing the screen point. He simply annulled the
wave altogether at the obstacle’s locus. We shall see below that the introduction of a
solution to the scalar wave equation by Kirchhoff mandated explicit consideration of
both surfaces.

The resultant at O was, then, the integral of all the wavelets over the semi-infinite
front m′MmA whose phases were respectively proportional to the path lengths AO ,
mO ,MO,m′O , etc. To carry out this integral, Fresnel had to choose a convenient origin.
For various reason he selected M (subsequently termed the ‘pole’), the intersection
between the direct line IO and the wave front m′MmA.9 Fresnel easily calculated that
the distances m′s′ (s′ is the intersection between the line m′O and the arc around the
center O) by which the wavelets differ in their distances to the point of observation are
to a very good approximation for points reasonably near the pole as z2(b + c)/(2bc)
with b representing IA and c representingAB, where B is the screen point, while z is the
distanceMm′. Consequently the phase difference i in Fresnel’s original decomposition
becomes π z2(b + c)/bcλ. Each of the wavelets decomposes accordingly, with the
consequence that the square of the resultant amplitude (and so the optical intensity)
at the observation point must be:

[∫
dz sin(π z2(b + c)/bcλ)

]2
+

[∫
dz cos(π z2(b + c)/bcλ)

]2

Fresnel’s successful demonstration that his formulae worked well empirically won
him a Paris Academy prize in 1818 despite the presence on the judging committee of
no less than Pierre-Simon Laplace (1749–1827) and Siméon Denis Poisson (1781–
1840), neither of whom was sympathetic to wave optics. Today, his expression is
a particular approximation to wave propagation under a specific condition: it is the
second-order expansion of the propagating phase that takes into account the spherical
wave front when the distance of interest lies between the quasi-static near-field zone
and the plane-wave-like far-field zone.10 At the time, and for decades thereafter, his
expression had a broader and more profound meaning, for it demonstrated that, far
from being a curious conception which could at best be used to generate known
results in a hitherto-unacceptable theory, Huygens’ principle had proven empirical
consequences. The result was to entrench the principle as a physically-meaningful
foundation over the following decades as the wave theory of light was gradually
assimilated, understood and produced altogether novel results. Most of these novelties
did not depend on the principle itself since they were for the most part concerned
with polarization phenomena. Nevertheless, as a unifying physical conception with a
specific mathematical expression Huygens’ principle provided a powerful foundation
for this new, complex and difficult theory. John Herschel (1792–1871), who published
the first comprehensive article on wave optics in 1827, placed particular emphasis on
the principle, which he expressed in the following way:

9 For full details see Buchwald (1989), Chap. 6.
10 See, for example, Kong (1986), pp. 671–695
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... conceive the surface of any wave A B C to consist of vibratory molecules, all
in the same phase of their vibrations (sic). Then will the motion of any point X
... be the same, whether it be regarded as arising from the original motion of S
[the source], or as the resultant of all the motions propagated to it from all the
points of the surface.11

The essence of this way of treating the problem can be concisely expressed. The
diffracted wave intensity u(�r , t) at a given location �r and time t is taken to be

u(�r , t) =
∫
�

dr ′A(�r , �r ′)uin(�r ′, t − ∣∣�r − �r ′∣∣ /c)

The integration takes place over the open parts of a blocking screen, while uin(�r ′, t)
is the intensity of the wave directly from the light source at a point �r ′ on � at time
t , A(�r , �r ′) is the inclination and any other necessary factors for propagation from �r ′
to �r , c is the wave speed, and

∣∣�r − �r ′∣∣ /c is the time delay (or, equivalently, phase
factor) from �r ′ to �r . In this manner of working, which remained common for decades
after Fresnel’s original work, the solution to the wave equation is presumptively given
(because of the known uin) under the assumption that the screen has no other effect
than to stop propagation except at its open parts. That is, the source wave is assumed
to be completely unaltered at the screen’s openings and completely extinguished over
its surface.

3 Stokes’ “Dynamical Theory of Diffraction”

Neither Fresnel nor those who worked in wave optics for decades afterwards began
their analysis of diffractionwith a differential equation. In other areas of optics, such as
dispersion and birefringence, analysis did proceed in the 1830s by generating solutions
to a wave equation, but in those cases boundary issues were irrelevant, posing a very
different type of problem. Nevertheless, the physical foundation of wave optics then
required the existence of an ether, a substance that pervades space and material bodies
and that must be governed by the laws of mechanics. In France and Germany for
decades the ether was presumed to be constituted of particles governed by Coulomb-
like forces of various presumptive intensities, whereas in Britain after circa 1830 it was
widely treated as an effective continuum governed by variously-assumed constitutive
stipulations.12

Fresnel himself never deployed a differential equation for optics to anymajor extent,
though he certainly did consider what sorts of forces must obtain between the elements
of the ether in order to justify his assumptions concerning the relationships required
between wave speed and direction of oscillation in birefringent media. That is, the
only circumstances at the time that raised questions of the forces that act on ether ele-

11 Herschel (1827), Sec. 623.
12 For the example of dispersion andAugustin Cauchy’s (1789–1857) elaboratemathematics see Buchwald
(2012). For a broad overview of the period see Buchwald (2013) and Darrigol (2012).

123



J. Z. Buchwald, C.-P. Yeang

ments were ones in which the wave speed varies with the direction of propagation and
of oscillation. Diffraction required nothing of the sort because the empirical circum-
stances were limited at the time to propagation in isotropic media. There was however
one important question that did demand a consideration of the wave equation, namely
the form of the inclination factor governing the amplitude of the Huygens wavelets
as a function of the angle between the line to the observation point and the normal to
the front which the wavelets comprise. Fresnel had argued on rather weak physical
grounds that, in the circumstances he was considering, the amplitudes are independent
of direction for the hemisphere tangent to the incident front in the direction of propa-
gation, which meant that in his diffraction formulae the inclination factor was simply
ignored. The first effort to determine that factor required a consideration of the wave
equation, and it was accomplished in 1849 by George Gabriel Stokes (1819–1903).

A senior wrangler and Smith’s prizeman at Cambridge University and eventually
Lucasian Professor of Mathematics there, Stokes had worked on optics (including
the aberration of light and spectroscopy) as well as fluid dynamics, a subject whose
mathematical structure resembled that of optics precisely because the optical ether was
presumptively governed bymechanical relations.13 Stokes introduced his “Dynamical
Theory” with the following words:

When light is incident on a small aperture in a screen, the illumination at any point
in front of the screen is determined, on the undulatory theory, in the following
manner. The incident waves are conceived to be broken up on arriving at the
aperture; each element of the aperture is considered as the centre of an elementary
disturbance, which diverges spherically in all directions, with an intensity which
does not vary rapidly from one direction to another in the neighborhood of the
normal to the primary wave; and the disturbance at any point is found by taking
the aggregate of the disturbances due to all the secondary waves, the phase of
vibration of each being retarded by a quantity corresponding to the distance from
its centre to the point where the disturbance is sought.14

This much is entirely similar to the standard assumption since Fresnel, and Stokes
did not go beyond it. Nevertheless, he penetrated very far into the mathematical core
of contemporary wave theory—farther than anyone had since Fresnel—by deriving an
entirely new result involving the polarization of diffracted light that he immediately
sought to confirm in the laboratory. Stokes’ primary purpose however was to uncover
the inclination or amplitude factor. To do so he began at once with the general differ-
ential equation of motion for an isotropic, inviscid elastic solid that he had himself
developed, and that he now applied to the optical ether:15

∂2�u/∂t2 = b2∇2 �u + (a2 − b2)∇(∇ · �u)

13 Stokes (1856); reprinted in Stokes (1883), pp. 243–328.
14 Ibid., 243–244.
15 Stokes (1845c). Of course neither Stokes nor anyone else, with the partial exception of James Clerk
Maxwell (1831–1879), used vector notation until the 1890s. Nevertheless physicists and mathematicians
of the period were able almost at once to produce the component equivalents of even complex vector
operations, so that modern notation does not unduly alter their original understanding.
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where �u is the displacement, and a, b are elastic constants. He then separated the
equation by defining ‘for shortness’ δ as the negative compression∇ · �u (or ‘dilatation’
as he called it), and �ω as the rotation (or, again in Stokes’ terminology, the ‘distortion’)
(1/2)∇ × �u:

∂2δ/∂t2 = a2∇2δ

∂2 �ω/∂t2 = b2∇2 �ω

The single equation for the compression, and the three for the components of the
rotation, all have precisely the same form, and Stokes could at once write down the
following solution, which he obtained from Poisson16:

U = t

4π

∫
F(at)dσ + 1

4π

d

dt

{
t
∫

f (at)dσ

}
(1)

HereU is the solution at some point P, t is the time, and f (at), F(at) are respectively
the initial values of the function δ(or a component of �ω) and of its time derivative at all
positions whose distance from P is at (or bt). The integrals, which correspond to the
mean values of the functions, are taken over a spherical surface of radius at (or bt) that
surrounds the field point P . Poisson’s solution has the peculiarity of representing the
effect at P in terms of a time- dependent radius that is drawn from P . Instead, that is,
of following a pulse as it expands outwards, with this solution we start at a given point
and cut space with surfaces drawn about it until we find surfaces that pass through the
regions which contain the initial disturbance. Poisson, as it were, held fixed the initial
disturbance and went looking for it from the field point, and this solution (which is
difficult to formulate in a rigorous manner17) applies to any disturbance that begins
at some moment. In contrast to the manner in which the wave equation would be
treated decades later, wherein the time-varying part, subjected to a Fourier expansion,
is separated from the location-varying part, this solution lumps together space and
time, treating the whole as an initial-value problem. Stokes then justified its extension
from, in effect, a pulse to infinitely long wave trains in the following way:

In the investigation it has been supposed that the force [disturbance] began to
act at the time 0, before which the fluid was at rest, so that f (t) = 0 when t is
negative. But it is evident that exactly the same reasoning would have applied
had the force begun to act at any past epoch, so that we are not obliged to suppose
f (t) equal to zero when t is negative, and we may even suppose f (t) periodic,
so as to have finite values from t = −∞ to t = +∞.18

16 It is particularly ironic that Stokes took this from Poisson, because he at once used it to argue that the
inclination factor varies in a fashion that Poisson himself would probably not have (Buchwald (1989), p.
192).
17 On which see Baker and Copson (1939), pp. 12–15.
18 Stokes was a bit disingenuous here, since not only his investigation, but Poisson’s solution, requires the
limitation. Stokes’ quick attempt to extend the class of allowable functions to cover those which are not
temporally delimited requires a great deal more justification than this Stokes (1883), pp. 278.
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Fig. 2 Stokes’ configuration for diffraction

To generate a formula that could be applied to diffraction, Stokes simply assumed
the disturbance to be sinusoidal in form. The final result for the wave of distortion
produced the following expression for its value at a field point located at a distance r
from the disturbance on a surface element dσ that forms part of an unblocked region:

dσ

2λr
(1 + cos θ) sin φ cos

[
2π

λ
(bt − r)

]
(2)

Here θ is the angle between the normal at the surface element and the line from there
to the field point, while φ represents the angle between the direction of the oscillation
and that same line: it was introduced to take account of polarization (Fig. 2). This
expression constitutes the first of an inclination factor, namely 1 + cos θ .19 Stokes’
main interest here was to show that, were the expression integrated over a completely
unblocked surface, then theoriginalwavewouldbe regenerated, demonstrating thereby
the consistency of an analysis based on Huygens’ principle. He did not however go
further to amend Fresnel’s original formulae by incorporating the inclination factor
– which would in any case be pointless given that the configuration of diffraction
experiments at the time made the factor inconsequential.

Unlike Fresnel, Stokes did not have to simply assume Huygens’ principle because
its wavelets now appeared as the integrands of a solution. Still, Stokes had not gone any
further than had Fresnel in respect to the conditions that should obtain over a blocking

19 Stokes set the compression wave to the side. However, the mechanically-necessary existence of both
compression and distortion generally posed a problem for such investigations because they cannot easily
be divorced from one another, particularly if the model involves, like Cauchy’s, forces between particles
[on which see Buchwald (1980, 1981)]. Cauchy assumed the compression wave to be invisible (which
raised energy issues that might in principle be detectable), while Stokes took the compression constant to
be so large that the corresponding wave speed was infinitely larger than the speed of the distortional wave,
implying that the former would not be visible or otherwise affect the latter. This amounted to assuming that
the ether is incompressible, requiring the rate of displacement ∂ �u/∂t of any element to satisfy∇·∂ �u/∂t = 0.
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surface andwithin its open regions. He had also simply assumed that thewave function
must vanish on the surface and remain completely unaffected over its open regions. The
consistency that he proved concerned only the question of whether the expression he
had generated for the wavelets could reproduce the original disturbance, not whether
the presumed values of the wave within the bounded regions and over the blocking
surface could themselves be justified.

Questions concerning the boundary conditions and uniqueness requirements that
arise when working with partial differential equations had previously been dealt with
in respect to the Laplace equation for the potential function (∇2ϕ = 0), most notably
in England by the mathematician George Green (1793–1841) in 1828.20 Green devel-
oped, among other results, what became known as “Green’s theorem” (of which more
below), and he did argue that, given the value of the potential over a closed surface,
there is one and only one unique solution to the Laplace or Poisson equation within
or without the closed surface, provided that the potential vanishes at an infinite dis-
tance from it, or what would eventually be termed the Dirichlet principle by Bernhard
Riemann (1826–1866).21

Now in 1845 and 1846 Stokes published two influential papers concerning the
aberration of light that invoked a condition for the ether’s velocity with respect to
the earth.22 He was almost certainly not familiar with the work in which Green had
deduced his theorem since it had not been published in a journal, and since in any
case its title seemed to concern itself with electricity. Only in 1845, when William
Thomson (1824–1907, later Lord Kelvin) rediscovered Green’s Essay, did it become
broadly known. Even if Stokes had knownGreen’s theorem, hewould not have thought
it relevant to the problem of aberration, despite the fact that both Green’s Essay and
Stokes’ aberration problemconcerned the question of solutions to theLaplace equation
under specific boundary conditions.

The question Stokes addressed was to find an appropriate condition on the motion
of the ether near the earth’s surface that could yield the constant of aberration, i.e. the
expression for the deviation of a star’s apparent position as a function of the speed of
light through otherwise stationary ether and the earth’s velocity through the medium.
Stokes demonstrated that the appropriate expression would follow provided that two
conditions were satisfied: first, that the ether’s velocity at the earth had to be the same
as the earth’s with respect to the ether at a distance, i.e. that the earth must fully drag
the ether along, and second that the part of the ether’s velocity due to the earth’s
motion must be irrotational, i.e. that ∇ × �v must vanish, in which case that part of the
velocity must be the gradient of a scalar function.23 Since Stokes had also required
the divergence of the velocity to vanish in his diffraction theory in order to eliminate
the compression wave, this would have meant that the ether’s velocity had to satisfy
a Laplace equation were it not that Stokes had limited the requirement to a ‘part’ of

20 Green (1828).
21 After Peter Lejeune Dirichlet, 1805–1859; cf Riemann (1857), p. 17.
22 Stokes (1845a, b).
23 Of course optical polarization required the existence of transverse oscillations, i.e. of ∇ × �v, and so
Stokes emphasized that irrotationality could hold only for “that part of the motion of the ether which is due
to the motion of translation of the earth and planets” (ibid., p. 137).
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the velocity, which accordingly essentially avoided having to deal with a boundary-
value problem. He was able in this way to ignore altogether the earth’s surface by
simply assuming in his calculation of the aberration constant that the small additional
‘part’ of the ether’s velocity due to the ether’s being entangled with the moving earth
was that of the earth itself relative to an ether undisturbed except by the (∇ × �v
bearing) motions of light. Nearly half a century later, in 1887, the Dutch physicist H.
A. Lorentz (1853–1928) returned to the question and decided that Stokes’ analysis
had to be treated as a boundary-value problem. Whatever the mechanism of earth-
ether entanglement might entail, Lorentz effectively assumed that, since the ether is
acknowledged to be incompressible, the Laplace equation must be satisfied, in which
case the ether’s motion is specified altogether by the scalar function’s normal gradient
at the earth’s surface, i.e. by the velocity, assumed to be that of the earth itself. Lorentz
then demonstrated that under these circumstances, the component of the gradient of
the requisite scalar function tangent to the surface will differ from the corresponding
component of the earth’s velocity, so that the ether will slip over the surface, ruining
the general applicability of Stokes’ calculation.24

Stokes in the mid-1840s had paid no attention at all to boundary-value conditions,
while Lorentz in 1887 insisted on invoking one immediately by jettisoning Stokes’
admittedly-vague separation of earth-plus-ether velocity for that of the ether. Lorentz
in other words constrained the problem to be one that simply had to satisfy a specific
boundary requirement on the Laplace equation, namely the so-called Neumann con-
dition, according to which specification of the scalar function’s normal gradient over
a closed surface completely determines the function’s value.25 However, as late as the
1870s physicists at least were not generally paying close attention to the mathematical
conditions imposed on harmonic functions by boundary-value requirements, as we
shall now see in detail in the case of Kirchhoff.

4 Kirchhoff renovates Huygens’ principle

Gustav Robert Kirchhoff was well-known when he left his two-decade-long academic
base in Heidelberg and took the first chair for an Ordinarius in theoretical physics
at the University of Berlin in 1875. His Berlin years from 1875 to his death in 1887
were capstones to a career, since his major contributions—electric circuit theory, spec-
troscopy, and thermal radiation—had all been made well before, while at Berlin he
devoted himself principally to teaching.26 Precisely because of the need to prepare
lectures Kirchhoff looked into the issues in optical diffraction that Stokes had only par-
tially resolved. In 1882, Kirchhoff read a seminal paper on optics at the Royal Prussian
Academy of Sciences in Berlin. It was published in the Academy’s Sitzungsberichte
and the following year in the Annalen der Physik und Chemie.

24 Lorentz (1887).
25 Named after the German mathematician Carl Neumann (1832–1925). For histories of the boundary-
value criteria for harmonic functions see Cross (1985); Cheng and Cheng (2005). See Kline (1972), Chap.
28 for an overview of partial differential equations in the period.
26 Jungnickel and McCormmach (1986), pp. 30–32, Vol. 2.
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The aim of Kirchhoff’s paper was similar to Stokes’ three-decades earlier work
but more general: Kirchhoff aimed to develop a “fully satisfactory theory” of light,
and not solely of diffraction per se, by starting with the wave equation itself.27 Like
Stokes, Kirchhoff assumed that the ether displacement �u corresponding to light was
altogether transverse, setting aside the possible existence of a compression wave (on
the widely-accepted premise that the ether is incompressible), yielding thereby the
following equation:

∂2�u
∂t2

= a2∇2�u

Also like Stokes, Kirchhoff used a scalar variable ϕ to express any of �u’s components,
but unlike Stokes he altogether ignored polarization [which Stokes had partially taken
into account through the introduction of the variable ϕ (cf 2)]:

∂2ϕ

∂t2
= a2∇2ϕ

Kirchhoff’s method of solving the equation however differed in fundamental ways
from Stokes’. Stokes had treated the situation entirely as an initial-value problem,
and he had accordingly used Poisson’s formulation to express the solution in terms of
the subsequent evolution of the distributed sources at time zero (cf 1). That solution
tacitly assumed that the disturbance vanishes on a blocking surface and is otherwise
unaffected, but Stokes did not directly incorporate the conditions into the wave equa-
tion’s integral solution. By contrast, Kirchhoff explicitly involved the boundaries of
the illuminated region.

Hebeganwith a point source in unbounded space.Assuming a trigonometric oscilla-
tionwith period T for an outward-propagating spherical wave, Kirchhoff first assumed
the following expression for the wave function:

ϕ = D

ri
cos

[
2π

(
ri
λ

− t

T

)]
+ D′

ri
sin

[
2π

(
ri
λ

− t

T

)]

or (following the decomposition that Fresnel had originally developed)

ϕ =
√(

D

ri

)2

+
(
D′
ri

)2

sin

{[
2π

(
ri
λ

− t

T

)]
− i

}

in which ri is the distance between the source or, in Kirchhoff’s word, ‘luminous’
point and the locus of observation, while D and D′ are amplitude coefficients whose
ratio determines the wave’s phase.28

27 Kirchhoff (1883), cf pp. 663. The paper was included in the posthumous publication of Kirchhoff’s
works: Kirchhoff (1891a), pp. 22–54.
28 Ibid., 665.
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Kirchhoff next set his “luminous point” to the side, together with his presumptive
expressions for the wave, and turned instead to “Green’s theorem” specifically in
order to obtain an expression that “specifies and generalizes the so-called Huygens
theorem”—that, in other words, can be interpreted as an expression for the effect
of Huygens’ wavelets in open regions of an illuminated space. Kirchhoff’s friend
and now colleague at Berlin, Hermann von Helmholtz (1821–1894), had years before
shown how to deployGreen’s theorem for the vibrations of sound in open-ended tubes.
Moreover, Kirchhoff had already developed the basis of what follows in 1876 in his
published lecture on propagation in a compressible fluid.29

Consider two scalar functions U and G of x , y, and z within a bounded space
V whose surface is denoted by s, and whose first and second spatial derivatives are
defined and continuous. Let dv be a differential volume element within the space V ,
ds a differential element of the surface s, and N the normal to ds directed toward the
interior of V . Then in Kirchhoff’s formulation:30

∫∫
©
s

ds

(
U

∂G

∂N
− G

∂U

∂N

)
=

∫∫∫
V

dv
(
G∇2U −U∇2G

)

Kirchhoff assumed ‘initially’ that the function G, like ϕ, satisfied the wave equation.
Accordingly, he set U to ϕ and inserted both it and G into his formulation, replacing
the spatial derivatives ∇2U and ∇2G with the time derivatives ∂2U/∂t2 and ∂2G/∂t2

via the wave equation. He then integrated over a time interval, requiring however that
the lower limit be negative and the upper limit positive:

t ′′∫
−t ′

dt
∫∫
©
s

(
ϕ

∂G

∂N
− G

∂ϕ

∂N

)
ds = 1

a2

⎡
⎣∫∫∫

V

dv

(
G

∂ϕ

∂t
− ϕ

∂G

∂t

)⎤
⎦
t ′′

−t ′

(3)

Kirchhoff then set G to an expression whose numerator bears a limited resemblance
to what would decades later become known as Dirac’s delta function:

G = F(r0 + at)

r0

Here ro is the distance from any point to an arbitrary but fixed point O, with both
points lying within the volume of integration in (3). The unusual function F satisfies
F(x) = 0 for x �= 0, while

∫ e
d F(x) = 1 where the lower limit d is a finite negative

number, and the upper limit e is finite positive.
This distinguishes Kirchhoff’s F from Dirac’s delta since the latter’s defining inte-

gral runs from negative to positive infinity. In his later optical lectures Kirchhoff

29 Kirchhoff (1876), pp. 314–317. There Kirchhoff had used a different specification for the limits in his
time integral with attendant changes in the argument which was however less detailed than it later became,
perhaps because Kirchhoff wanted to ensure the analysis would work for an infinite train of disturbances
(see below).
30 Kirchhoff (1883), p. 666.
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justified the existence of such a function as a limiting case by way of an example.
Suppose F(x) to be (μ/

√
π)e−μ2x2and let the constant μ be so large that F(x) is

“vanishingly small for every finite value of x” and so as infinite as μ itself when
x is zero. Setting z = μx , then even integrating over infinity the function would

equal unity because (1/
√

π)
+∞∫
−∞

e−z2dz = 1, in which case Kirchhoff’s F converges

asymptotically to Dirac’s delta.31

Kirchhoff’s purpose in introducing the strange ‘function’ F was to generate surface
expressions that could be applied to the physical situation he had in mind, namely the
propagation of lightwithin a region that is illuminated by one ormore point sources that
are external to the region. Sections of the bounding surfaces can then be assimilated
to light-blocking or reflecting obstacles, allowing as well for different propagatory
speeds within different parts of the region in order to accommodate refraction. In
doing so, Kirchhoff assimilated the point at which the wave function’s value is to be
calculated to the point at which the distance ro in the definition of functionG vanishes.

This required two steps. First the volume integral on the right-hand side of (3) had
to be removed. To do soKirchhoff imposed a second condition on the lower limit of the
time integration, namely that ro-at′ must be “negative and finite.” This implies that the
distances ro from O to any point in the region, thereby including points infinitesimally
near the bounding surface, are always less than at ′. What might that mean in terms
of the physics of the situation? Likely this, though Kirchhoff made no comments: the
initial optical disturbance must have begun at a point in time sufficiently distant that it
had long passed point O . This presumably licensed Kirchhoff to work thereafter with
an effectively continuous train of disturbances of arbitrary form.

From the requirement that ro-at′ must be less than zero (and finite) it followed that
the ‘function’ F must be zero at both limits of the integral, namely -t ′ and t ′′, since t ′′is
positive, and so the entire right-hand side of (3) will indeed vanish, leaving only the
surface integral on the left. This was not enough for the equation to bemade physically
applicable. Kirchhoff’s unusual ‘function’ F did wipe out the volume integral, but
G still appeared, and it did not have any apparent physical meaning, having been
chosen for the express purpose of using Green’s equation, thereby permitting the
consideration of surfaces and hence the general behavior of light in the presence of
physical boundaries. Moreover, the inclusion of point O involves a singularity since ro
vanishes there. Which is why Kirchhoff decided to cut O altogether out of the volume
over whose surfaces the integration takes place.

To that end Kirchhoff surrounded O with an “infinitesimal sphere” which he sub-
tracted from his region. That produced two bounding surfaces: the original one as
external boundary, and the spherical surface surrounding O as internal boundary
(Fig. 3). The result was to split the surface integral into two parts, one over the exter-
nal, the other over the internal boundary. With lowercase s denoting the external, and

31 Kirchhoff (1891b), pp. 24–25. Note that the requirement that the integration limits of F must be “finite
positive and negative” is maintained. He had first developed an argument for the existence of F in his 1876
derivation for propagation in a compressible fluid. This addenda to the original specification of the function
F was added by the editor, Kurt Hensel (1861–1941), of the Optik (Kirchhoff 1891b, p. 267), indicating
the existence of disquiet concerning the function. We thank Ning Yan Zhu for noting Hensel’s intervention.
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Fig. 3 Kirchhoff’s configuration for Green’s theorem

uppercase S the internal boundary, Kirchhoff’s equation thereby becomes:32

t ′′∫
−t ′

dt
∫∫
©
s+S

(
ϕ

∂G

∂N
− G

∂ϕ

∂N

)
d(s + S)

=
t ′′∫

−t ′
dt

∫∫
©
s

(
ϕ

∂G

∂N
− G

∂ϕ

∂N

)
ds +

t ′′∫
−t ′

dt
∫∫
©
S

(
ϕ

∂G

∂N
− G

∂ϕ

∂N

)
dS = 0 (4)

Kirchhoff next moved to eliminate G. First of all, ro now becomes the radius R of the
“infinitesimal sphere,” while its surface element dS has the factor R2. Consequently
Gds is proportional to R which, since the sphere is infinitesimal by assumption, means
that the second term in the integral over the sphere’s surface S can be discarded. Taking
however the normal gradient of G at the sphere’s surface yields—(1/R2)F(R + at),
which is—(1/R2)F(at) since Rcan be neglected in the function’s argument. Multipli-
cation by dS accordingly leaves just F(at), and so the integral over S simply reduces
to −4πϕ0 where ϕ0 is the value of the wave function at the locus of the fixed point O
at time zero.33 To eliminate F altogether Kirchhoff recurred to his requirement that its
integral over any finite interval must be equal to one, in which case integrating F(at)
over time simply produces 1/a, with (4) thereby reduced to the following:

t ′′∫
−t ′

dt
∫∫
©
s

(
ϕ

∂G

∂N
− G

∂φ

∂N

)
ds = −4π

a
ϕ0(0) (5)

32 Ibid., pp. 666–668.
33 At time zero because F(at) is itself non-zero only when its argument vanishes.
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Note that the locus of whatever luminous point gives rise to the source wave is not as
yet under direct consideration in Kirchhoff’s analysis beyond requiring that it must
lie outside the bounded region in order to avoid a further singularity.

Both G and a time integral still appear here and had to be removed in order to reach
a physically useful result—in order, that is, to calculate the amplitude at a given point
in the region bounded by the surface of integration. The region in question must not at
this stage contain a source. Again using the integral requirement over the finite interval[−t ′, t ′′

]
and now shifting the time origin to t,Kirchhoff reduced (5) to the following

form, which we shall call his fundamental result:34

4πϕ0(t) =
∫∫
©
s

ds · �

where

� = ∂

∂N

ϕ(�r0, t − r0/a)

r0
− f (�r0, t − r0/a)

r0
and f = ∂ϕ/∂N (6)

Helmholtz, as Kirchhoff knew, had derived a similar formula in 1859 to characterize
the acoustic vibration within a pipe with one open end, albeit in a considerably less
general manner. Unlike Kirchhoff, Helmholtz assumed temporal harmonic variation,
thereby separating the time- from the space-dependent part of the wave function.
Kirchhoff, recall, had not required such a limitation, which is why he had introduced
his function F .35 Note that in Kirchhoff’s formulation the loci of whatever luminous
points are responsible for the radiation do not appear explicitly. The waves that they
engender will appear only by supposition in the boundary conditions that Kirchhoff
adopted. Kirchhoff did not, in other words, separately develop Green integrals for the
incident and resultant waves and then relate them through his boundary conditions.

Kirchhoff now interpreted his fundamental result explicitly in terms of Huygens’
principle: “the motion of the ether [at any point] in the space enclosed in surface s
can be regarded as caused by a layer of luminous points on surface s, because each
one of the two terms of which � is composed may be described as corresponding to a
luminous point situated at the location of ds.”36 However, where Huygens had based
his principle on a consideration of the physical tendency to expand at each point of

34 Ibid., 668–669.
35 Helmholtz, “Theorie der Luftschwingungen in Röhren mit offenen Enden,” Journal für die reine und
angewandte Mathematik, 62:1 (1859), 23. Suppose with Helmholtz that
ϕ(�r , t) = ϕc(�r) cos(ωt) + ϕs (�r) sin(ωt) so that the time and space dependencies could be separated.
Helmholtz’s equation may then be written as follows:

4πϕc,s (r0 = 0) =
∫∫
©
S

ds ·
{

∂ϕc,s

∂N
Gc,s (ro) − ϕc,s

∂Gc,s (ro)

∂N

}

with

Gc(r) = cos(kr)

r
, Gs (r0) = sin(kr)

r

36 Ibid., pp. 669–670. The translation is by Anne Hentschel in Hentschel and Zhu (forthcoming).
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a wave front, Kirchhoff’s version emerged as a result of his application of Green’s
theorem without any direct consideration of the physics beyond the wave equation
proper. Of primary significance, his expression (6) indicated that the contribution
from each point on an arbitrary surface s to the ether vibration at a point O that is
enclosed by s is determined by both the ether vibration ϕ and its normal gradient on
s. Both values had consequently to be specified.

Kirchhoff recognized that his result could be extended to a case in which the point O
is exterior to the bounding surface s while the originating luminous points (which are
thus far exterior to s) liewithin the enclosed region, amounting thereby to an inversion
of the existing situation. Key to the first step in the derivation of this extension was to
redefine the space exterior to s as a volume bounded internally by s and externally by
the infinitely large surface S∞ so that (6) becomes:

4πϕ0(t) =
∫∫
©
s

ds · � +
∫∫
©
S∞

dS∞ · �

Here the normal to s is turned from inward to outward. Supposing a “particular condi-
tion” to be satisfied—namely, that before some finite past moment the values of both
functions (ϕ and f ) were everywhere zero—then, provided that the point O is not
itself at infinity and choosing a subsequent but otherwise arbitrary moment, both func-
tions will at that time also vanish on the infinitely large surface S∞.37 This licensed
a principle of inversion, according to which whatever holds for a O point applies as
well to a luminous point by exchanging their locations. In such an exchange the locus
of evaluation for the wave remains near the Green function singularity.

To further extend the situation, Kirchhoff envisioned two closed surfaces that
enclose volumes which have an intersection within which point O lies, while any
luminous points I lie outside both regions (Fig. 4). Each of these surfaces then yields
ϕ0 near O . Subtracting the intersection from the union of the volumes creates a region
with a new surface that bounds a region from which both O and any luminous points
are excluded (because O now lies within the extracted intersection of the two origi-
nal volumes). Under theses circumstances the integral in (6) always vanishes. By the
principle of inversion the same follows if the original two surfaces enclosed luminous
points, with O lying outside both. A similar procedure, but this time forming the com-
posite union of two intersecting surfaces, implies that the integral in (6) also vanishes
if a surface includes both O and I . In summary Kirchhoff has demonstrated:

1. a region that includes O but excludes I can produce a non-zero value for the integral
in (6). The same holds vice versa by inversion.

2. a region that excludes both O and I produces a zero value for the integral in (6).
3. a region that includes both O and I also produces a zero value for the integral in

(6).

37 Kirchhoff’s requirement was in later years subsumed under what became known as the Sommerfeld
radiation condition, according to which the limit at infinity of the difference ∂ϕ/∂N −2π iϕ/λmust vanish:
cf Goodman (1988), p. 44.
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Fig. 4 Kirchhoff’s further configuration for Green’s theorem

These three correspond respectively to cases in which (1) I and O are separated
by a surface, (2) the radiation from I simply passes through the region, and (3) I ’s
radiation reaches O unimpeded.

Before any specific results could be obtained, Kirchhoff had to produce a useful

expression for the general integral,
∫∫
©
s

ds · �, given the locus of O and the waves

engendered by whatever luminous points are present. To do so he assumed a single
radiating point I and limited the form of the wave that it produces to a time harmonic
expression, namely to ϕ = (1/ri ) cos [(ri/λ − t/T )2π]. The distances ro,ri that now
both appear in the general integral are respectively drawn from the loci O, I to points
on the surface of integration. This produced the following form for the integrand �:

� = 1

riro

(
1

ri

∂ri
∂N

− 1

ro

∂ro
∂N

)
cos

[(
ri + ro

λ
− t

T

)
2π

]

+ 2π

riroλ

(
∂ri
∂N

− ∂ro
∂N

)
sin

[(
ri + ro

λ
− t

T

)
2π

]

Kirchhoff next introduced a specific coordinate system and an approximation linked
to it. The origin of the new coordinate system was placed on the surface of integration
at a very specific point: namely, where the sum ro + ri is a minimum and so is
stationary. This will occur if the line joining I to O passes through the surface of
integration, in which case the origin will lie at the intersection of the joining line with
the integration surface. Kirchhoff’s new origin is effectively the same as the one that
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Fresnel had introduced decades before, namely the pole. Using this coordinate system,
he expanded ro,ri as functions of ρ0, ρ1, these being the distances from O, I to the
pole, but only up to second order. That limitation amounted to the requirement that the
wavelength is vanishingly small in comparison to the distances ro, ri .38 This would in
contemporary parlance be referred to as the “stationary phase approximation.”

For a completely unobstructed wave Kirchhoff could then show that integrating
the resultant expression simply reproduces the presumptive wave from the luminous
point because the normal gradients that appear in the sine term simply cancel one
another, obliterating it, leaving only the cosine term. He was now ready to grapple
with the general problem of optics, including retrieving the situation that would repro-
duce a facsimile of an optics based on bundles of rays. To do so required a crucial
physical assumption, known later as “Kirchhoff’s Ansatz” or as his “physical optics
approximation:” namely, that the light wave ϕi (and its gradient ∂ϕi/∂N ) at any point
on the surface of integration is approximately equal to the source wave from I (and
its gradient) plus any reflected wave ϕr (and its gradient ∂ϕr/∂N ), meaning that the
presence of any obstructing body does not alter the wave that is incident upon it other
than by affecting the values of the wave function and its normal gradient over the
body’s actual surface:39

ϕ ∼= ϕi + ϕr ,
∂ϕ

∂N
∼= ∂ϕi

∂N
+ ∂ϕr

∂N
.

Kirchhoff considered three specific situations: light scattering from a “black body,”
light diffracted from a black-body screenwith an aperture, and diffraction by a grating.
For our purposes here, wewill consider only his treatment of diffraction. A light source
at point i is enclosed by an opaque screen whose surface S is punctured by an aperture
A. To simplify the calculation, Kirchhoff transformed the screen from an enclosed
surface to an infinite plane, so that the light source i and the point of observation
O were on opposite sides of the infinite, flat screen. Here we encounter Kirchhoff’s
requirements for both the wave function at the screen’s two surfaces and its normal
gradients there. Divide S into a part Si that faces the light source and a part So that is
shielded from it. Since the screen extinguishes all light striking it, the wave function
must vanish altogether over So In addition, the wave over the aperture A should have
the same form as the source wave ϕi according to Kirchhoff’s Ansatz, which leaves
the wave near Si (and so over the aperture) unaltered if the screen is black (there being
no reflection). Note Kirchhoff’s explicit consideration of both sides of the screen.

However, neither the Ansatz nor Kirchhoff’s definition of an opaque screen in
themselves placed any limitation on the wave’s normal gradient over So. Kirchhoff

38 Kirchhoff expressed this as the wavelength being ‘infinitesimal’ and the sum ro, ri being effectively
constant throughout the integration since the limitation to a second-order expansion restricts the integration’s
accuracy to loci within the vicinity of the origin, where the sum is a minimum (Kirchhoff 1883, p. 672).
39 Ibid., pp.683–685.
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nevertheless assumed that it too would vanish over the shadowed surface of the screen,
producing the following set of boundary conditions:40

ϕ = ϕi ,
∂ϕ
∂N = ∂ϕi

∂N on A

ϕ = 0, ∂ϕ
∂N = 0 on So

Using these boundary conditions with a source wave set to (1/ri ) cos[(ri/λ− t/T )

2π ], the integrand � produces the following result for the wave at an observation
point O under the approximation that the wavelength is vanishingly small in compar-
ison with the distances of both the source and observation points from the aperture
(Fig. 5):41

ϕo =
∫∫
A

ds� = 1

2λ

∫∫
A

ds

riro

(
∂ri
∂N

− ∂ro
∂N

)
sin

[
2π

(
ri + ro

λ
− t

T

)]

The term containing the difference between the normal gradients of ro, ri required
two further approximations: namely that these distances are much larger than the
dimensions of the aperture and so can be considered constant across it outside of the
sine term in the integrand, and that the line from I to a point in the aperture forms
an “infinitesimal angle” with the line from O to that point. In that case the normal
gradients in � become equal and opposite since they are simply the cosines of the
angles that the lines from I and O make with the normal, while the product rori is
effectively constant, yielding the following expression for the wave at O:

ϕo = 1

λriro

∂ri
∂N

∫∫
A

ds sin

[
2π

(
ri + ro

λ
− t

T

)]

40 Given these boundary conditions, and a special condition, Kirchhoff could also retrieve geometric optics.
Require that the sum of the distances from I and O to the surface must not be constant for any finite part
of it—meaning in effect that both the observation and luminous points are very far away. If, under this
condition, the line joining I to O does not anywhere intersect a body that does not reflect light—a “black
body”—then the wave at O remains unaltered. If, on the other hand, that line passes through the black body
at least once, then “darkness occurs at the location of O ,” a true shadow is formed and in consequence “the
light from the luminous point propagates rectilinearly in rays that can be regarded as independent of one
another” (ibid., pp. 686–687). This retrieves geometric optics for a black-body obstacle and an effectively
infinitesimal wavelength. The limitation to constancy over a finite area of the surface for the sum ro + ri is
dropped for diffraction.
41 Ibid., p. 688. Note that ∂ri /∂N = cos(�ri , �ni ) and −∂ro/∂N = cos(�ro, �no), where �ri is the vector from
an arbitrary point on A to the point of illumination I , �ro is the vector from the same point on A to the point
of observation O , �ni is the vector normal to A and pointing toward the side of I , �no is the vector normal

to A and pointing toward the side of O , and cos(�a, �b) is the cosine of the angle between the two vectors �a
and �b. Kirchhoff’s diffraction integral may thereby be written as

ϕo = 1
2λ

∫∫
A

ds
ri ro

[
cos(�ri , �ni ) + cos(�ro, �no)

]
sin

[
2π

(
ri+ro

λ − t
T

)]
.
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Fig. 5 Kirchhoff’s diffraction configuration

Note immediately one difference from Fresnel’s original expression: the Huygens
wavelets are shifted by a quarter-wavelength in phase from the source wave, which
generated discussion in subsequent years.42

Kirchhoff added an incident time-harmonic sinewavewith a different amplitude for
generality and could at once write down an expression for the optical intensity at O .
For simplicity we will assume a unit total incident intensity in which case Kirchhoff’s
diffraction integral yields:43

intensity at O = 1

2λ2r2i r
2
o

(
∂ri
∂N

)2

(c2 + s2)

where c =
∫∫

ds cos

(
ri + ro

λ

)
2π and s =

∫∫
ds sin

(
ri + ro

λ

)
2π

The functions c, s are of course the Fresnel integrals, while the factor in the square of
the normal gradient of ri is Kirchhoff’s inclination factor, here obtained for the first
time directly from the solution to the wave equation via Green’s theorem and suitable
approximations. Except for this factor multiplying the integrals, the result has the
same form as the one that Fresnel had produced decades before for the same situation.
Kirchhoff’s is more general in two ways: first it includes a factor that depends directly
on an inclination factor and inversely as the product of the wavelength by the distances

42 Fresnel took the wave in Huygens’ principle to differ from the source wave solely by virtue of distance
to the surface of integration, so that, e.g., a cosine wave remained a cosine wave plus a phase addition to
its argument. However, the integrands in Kirchhoff’s expression are shifted by a quarter wavelength from
the source wave in addition to the phase addition. The shift is a direct consequence of applying Green’s
theorem to the wave equation.
43 Kirchhoff (1883), p. 689.
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of I, O to the aperture loci, and secondKirchhoff left his result in terms of ro,ri instead
of further approximating in terms of the vertical distances of I , O to the screen.

5 The Poincaré paradox

Trained in engineering at the École Polytechnique and the École des Mines, Poincaré
had always kept an active line of research in mathematical physics and applied mathe-
matics, in spite of his better known works in more abstract areas. In 1886 he assumed
the chair of mathematical physics at the University of Paris, where he lectured on
optics in the winter semester of 1887–1888, which he again taught in 1891–1892.44

Both sets were published, and in the 1892 lectures Poincaré reviewed what he then
termed “Kirchhoff’s hypotheses” for diffraction.45 If, he began, two functions G, ϕ

are continuous and finite within a given region, then Green’s theorem requires:

∫∫
©


(
ϕ

∂G(r)

∂N
− G(r)

∂ϕ

∂N

)
dσ =

∫∫∫
V

dv
(
G(r)∇2ϕ − ϕ∇2G(r)

)

where the surface of integration is denoted by. Suppose next thatG has a singularity
at the origin O of coordinates but such that the product Gr becomes unity there, with
r denoting distance from O . Surround O with an infinitesimal sphere and calculate
the integral over its surface, producing (as with Kirchhoff) the value −4πϕo, which
gives the value for ϕ at the locus O of the singularity for G. Assuming further that
both ϕ and G satisfy the wave equation, then the volume integral vanishes, leaving
Poincaré’ with (7) for the value of ϕO at a point that lies within an infinitesimal sphere
which is itself surrounded by a closed surface :46

∫∫


(
ϕ

∂G(rP )

∂N
− G(rP )

∂ϕ

∂N

)
dσ = − 4πϕo (7)

If point O is not surrounded by  then the integral vanishes.
To apply the theorem to diffraction, Poincaré considered a situation that was similar

to Kirchhoff’s but that was configured in a different manner. He divided space into
four distinct surfaces as follows. Marking an arbitrary point that we shall designate as
M , Poincaré denoted the surface of the screen facing M as B and the screen’s opposite
surface as C. He then described a closed surface S, part of which coincides with B
and within which point M lies; A denotes the part of S that excludes B. Surface S is
consequently the union A+ B. Finally, he surrounded M with an infinitesimal sphere
sM that lies within the region surrounded by S. We have added a point P that lies

44 For a thorough account of Poincaré’s life and career seeGray (2013).AlsoDieudonné (2008);Charpentier
et al. (2010). On anomalous dispersion and its theoretical consequences see Buchwald (1985), chap. 27.
45 Poincaré had derived formulae akin to Kirchhoff’s in the 1887–1888 lectures, though at that time he was
unaware of Kirchhoff’s theory; he had then also noted that the boundary conditions cannot strictly hold at
the same time: Poincaré (1889), pp. 115–116. On Poincaré and light see Darrigol (2015).
46 Poincaré (1892b), pp. 141–143.
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entirely outside the union C + A and have surrounded it, like M , with an infinitesimal
sphere sp. Poincaré’s configuration placed the locus of his luminous point at point M
within the region surrounded by the surface, which is where Kirchhoff had placed his
observation point. The observation point, though Poincaré did not mark it, here lies at
a point P , outside C + A.

Poincaré introduced a function ϕi to represent the wave at any point emitted by
the luminous point M in the absence of a physical screen. When B and C are the
surfaces of a physical object, then the wave ϕi is altered by their presence to ϕR

according to Kirchhoff’s boundary conditions. Poincaré employed the distinction to
establish relations between the two functions using the boundary conditions for an
opaque body. Kirchhoff had not done anything similar since he had in the end directly
inserted the value of the wave from the luminous point into his integral and had applied
boundary conditions without having reached the result by means of relations between
distinct Green’s integrals for ϕi ,ϕR .

To clarify Poincaré’s somewhat terse discussion we introduce the following con-

vention: the value ϕP at a point P of the integral 1
4π

∫∫
σk

[
GP

∂ϕ
∂N − ϕ ∂GP

∂N

]
dσ of a

function ϕ and a Green’s function GP , the latter of which has a singularity at P,over a
set of surfaces σk that bound the region enclosing P will be represented by

∫∫
σk

[ϕ].47 In

order to employ Green’s theorem for the value of the wave function at P we surround
P with an infinitesimal sphere in Kirchhoff’s fashion so that we can use Green’s the-
orem to replace the integral over the surface of that sphere with the value of the wave
function at P . Then, with reference to Fig. 6, we can with Poincaré build expressions
for both ϕi , ϕR by considering different sets of the surfaces. Consider first a surface
formed by the union of sM with the surfaces B,C . A source wave ϕi

P from M that
reaches the point Pwithin the region bounded by these surfaces will accordingly be
represented by the following expression:

ϕi
P =

∫∫
sM+B+C

[
ϕi

]
(8)

The resultant wave ϕR
P at P can be similarly represented by integrals over these same

three surfaces:

ϕR
P =

∫∫
sM+B+C

[
ϕR

]
(9)

However, the latter is affected byKirchhoff’s boundary conditions, for which Poincaré
assumed the region surrounded by B and C to be opaque. Accordingly, and assuming
Kirchhoff’s Ansatz, the source wave at surface B, which faces the luminous point at
M , is unaffected by the presence of the body, while at surfaceC Kirchhoff’s boundary

47 Poincaré always presumed an outer surface S∞ at infinity at which the wave function ϕ and its normal
derivative vanish, with the surfaces σk forming inner boundaries. The Green’s function at point U is GP =
exp(−ikrP )/rP , where rP is the distance between U and P, k = 2π/λ and the time dependence has been
removed due to the monochromatic assumption.
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Fig. 6 Poincaré’s first surfaces

conditions required the resultant wave and its normal derivatives to vanish. Conse-
quently ϕR

P can be expressed in terms of the source wave and just the two surfaces
B, sM :

ϕR
P =

∫∫
sM+B

[
ϕi

]
=

∫∫
sM+B+C

[
ϕi

]
−

∫∫
C

[
ϕi

]
(10)

We next follow Poincaré by introducing a new set of boundaries using the surfaces
in Fig. 6, specifically the space bounded internally by the union of A with C (and
externally by the surface at infinity). The source wave at any point in this region
consequently has the expression:

ϕi
P =

∫∫
A+C

[
ϕi

]
(11)

Equating the expressions (8) and (11) for ϕi
P produces (12):

ϕi
P =

∫∫
sM+B+C

[
ϕi

]
=

∫∫
A+C

[
ϕi

]
(12)

As a result expression (10) for the diffracted wave ϕR
P becomes (13):
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Fig. 7 Poincaré’s surfaces adapted to an opaque screen (B+C), with an aperture (A), enclosing a luminous
point (M) and an observation point (P)

ϕR
P =

∫∫
sM+B+C

[
ϕi

]
−

∫∫
C

[
ϕi

]
=

∫∫
A+C

[
ϕi

]
−

∫∫
C

[
ϕi

]
=

∫∫
A

[
ϕi

]
(13)

That is, the diffracted wave at a point P can be found by integrating the wave from
the luminous point M over an open surface whose unclosed portion is bridged by the
obstacle, with M lying within the region enclosed by the bridged surface and P lying
outside it, precisely as Kirchhoff had found.

For clarity, we can redraw as follows to represent the typical case of a screenwith an
aperture. If we imagine the obstacle bounded by B andC to be an infinite plane screen
and the open surface A to be an aperture on the screen, then Poincaré’s configuration
in Fig. 7 is nothing but the configuration for Kirchhoff’s diffraction problem (surface
C in that case becomes the screen surface facing away from Poincaré’s luminous point
M , i.e. C becomes the shadowed surface).

Poincaré’s explicit introduction of integrals for the source wave revealed a problem
that Kirchhoff would not have seen precisely because he had considered the source
wave only towards the end of his calculations—until then his luminous point, though
necessarily present, had not directly entered. With Poincaré we now consider a point
L located within the region B + C bounded by the surfaces of the screen itself. This
point is the locus of a Green’s function GL . In doing so we first consider B and C
merely as surfaces and not as the boundaries of an opaque screen in order to produce
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Fig. 8 Poincaré’s point L within the region bounded by B + C

an expression for the source at L that will lead us to the difficulty that Poincaré
discovered.48

Recall first that in these calculations a surface S∞ at infinity is presumed where the
wave function and its normal derivatives vanish. We now develop expressions for the
values of the source wave and of the total wave at L by integrating within the region
that does not enclose it—the darkened area in Fig. 8, which is bounded by sM , S∞,
and the surfaces B,C of the screen itself.

Since point L does not lie within the region of integration, and since there are no
singularities for the sourcewave, the total wave, or theGreen’s functionGL within that
region, then Green’s theorem requires that the integral for either the source wave or
for the total wave over the boundaries and using the Green’s function GL must vanish
(since the values also vanish at infinity by assumption we may as always neglect that
boundary):

∫∫
sM+B+C

[
GL

∂ϕi

∂N
− ϕi ∂GL

∂N

]
dσ = 0 (14)

∫∫
sM+B+C

[
GL

∂ϕR

∂N
− ϕR ∂GL

∂N

]
dσ = 0 (15)

48 Poincaré’s deduction of the difficulty is extremely terse. What follows draws out the several relations
that he developed in somewhat greater detail. Also see Baker and Copson (1939), pp. 70–72.
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However—the key element in Poincaré’s proof—Kirchhoff’s boundary conditions
reduce (15) to (16) since ϕRand its normal derivatives should both vanish over C,
while taking the values of ϕi over B and sM .

∫∫
sM+B

[
GL

∂ϕi

∂N
− ϕi ∂GL

∂N

]
dσ = 0 (16)

Subtracting (16) from (14) accordingly yields (17):

∫∫
C

[
GL

∂ϕi

∂N
− ϕi ∂GL

∂N

]
dσ = 0 (17)

And here we find Poincaré’s problem. Since ϕi is an arbitrary source wave, and since
surface C is itself not only arbitrary but also without physical constraints when con-
sidering the source wave, (17) would imply that such a wave would have to vanish
“whatever the form of the screen,” i.e. even in its physical absence. Waves could sim-
ply not exist at all. Something was clearly wrong with the boundary condition over
the shadowed surface of the screen, since it is that condition which produces (17).
Poincaré did not also deduce through an example that the wave which results from
Kirchhoff’s boundary conditions cannot reproduce the very conditions over the aper-
ture proper that led to it (cf footnote 81 below). He had instead found that waves could
simply not occur at all given Kirchhoff’s conditions.

In working with Green’s theorem earlier in his lectures, Poincaré had remarked that
“in general, itwill not be possible arbitrarily to assign to one a systemof values,whether
of ϕ or dϕ/dN , because these two functions are linked by a relation expressing that the
integral is null in an exterior point.”49 This is perhaps what led him to investigate what
occurs when the integrations are carried out for “an exterior point” in Green’s theorem,
leading to the contradiction between the existence of waves and Kirchhoff’s boundary
conditions that he uncovered. Poincaré’s remark concerning overdetermination would
certainly have been clear to most mathematicians and physicists in his day. However,
that fact alone does not lead to his result, which requires considerably more: the
problem arises because the total wave (and its normal derivative) is presumed to be
the same as the source wave over the entire visible part of the obstacle (surface B
in Fig. 8. Poincaré’s point L within the region bounded by B+C), for that was why
ϕi appeared in Poincaré’s several expressions for ϕT , but that it must vanish on the
shadowed surface (C).

In 1897LordRayleigh inEngland took an entirely different tack.He did notmention
the Poincaré paradox at all, but instead developed two alternative expressions for the
diffracted wave. Neither of the two solutions suffered in the manner that Poincaré
had pointed out because, unlike Kirchhoff’s expression, Rayleigh’s alternatives did
not impose simultaneous requirements on both the wave and its normal derivative—
which Poincaré had himself pointed to as a possible source of the problem, though

49 Poincaré (1889), pp. 144–145.
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we have seen that it required both that and a discontinuity of the wave and its normal
derivative in crossing from the unshielded to the shielded region.

6 The Rayleigh-Sommerfeld alternatives

By themid-twentieth century, the inconsistency of Kirchhoff’s theory seemed tomany
to be an obvious consequence of the well-known boundary conditions for partial
differential equations. As E.W. Marchand (1914–1999) at Eastman Kodak’s Research
Laboratory and Emil Wolf (1922-) at the University of Rochester (the latter of whom
had studied under Max Born) remarked in 1966:

Since the time-independent wave equation for U is elliptic, the specification of
U or its normal derivative ∂U/∂n in the plane of the aperture (together with the
specification of the asymptotic behavior of the solution at infinity in the appro-
priate half-space) is sufficient to specify the solution uniquely. The inconsistency
in Kirchhoff’s theory arises from the specification of bothU and ∂U/∂n and has
the consequence that, as the point of observation P approaches the plane of the
aperture, the Kirchhoff solutionUK (P) does not recover the assumed boundary
conditions.50

It had for decades been common knowledge that solutions to hyperbolic or elliptic
partial differential equations are fully determined by either, but not both, of the fol-
lowing two conditions: (1) the Dirichlet, which specifies the value of the function on a
given boundary, or (2) theNeumann, which specifies the value of the function’s normal
derivative there.51 From this perspective, of which we have just seen that Poincaré was
quite aware, Kirchhoff’s theory must be problematic. Yet the result seemed to work
quite well empirically given the approximations that Kirchhoff had made. Poincaré
accordingly thought that, though the two requirements are not “rigorously compati-
ble, they are at least so in an approximate manner, when one neglects quantities of the
order of a wavelength.”52 He did not however provide any clear justification for such
a claim.

In 1897 Rayleigh, the leading expert on the theory of sound (having published the
first edition of his magisterial treatise on the subject in 1877) detailed a theory that
avoided overspecifying the boundary conditions.53 Rayleigh examined two situations:
in one (ϕ I ) the normal gradient of the wave vanishes over the shadowed surface of
the screen, while in the other (ϕ I I ) the wave itself does. In both cases the wave and

50 Marchand and Wolf (1966), p. 1712.
51 Hyperbolic equations, of which the time-dependent wave equation is one, have the form

∂2ϕ/∂x2 −
(
1/c2

)
∂2ϕ/∂t2 = f (x, t) while elliptic equations satisfy

∂2ϕ/∂x2+∂2ϕ/∂y2 = f (x, y)—Laplace’s, Poisson’s and the time-independent wave equation developed
by Helmholtz are all elliptic.
52 Poincaré (1892b), p. 188.
53 Rayleigh (1897). The details of Rayleigh’s analysis depended upon results he had developed in his
Theory of Sound, whose second edition of the first volume had appeared in 1894 and, for the relevant parts
of the second volume, the year before.
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its normal gradient must be continuous across the aperture. This produces a duo of
possible solutions as follows, wherein S denotes the surface of the screen including
any aperture and A denotes an aperture:54

ϕ I = −1

4π

⎡
⎣ ∫∫

S−A

ds

{
ϕ

∂G

∂N

}
+

∫∫
A

ds

{
ϕ

∂G

∂N
− G

∂ϕ

∂N

}⎤
⎦

ϕ I I = 1

4π

⎡
⎣ ∫∫

S−A

ds

{
G

∂ϕ

∂N

}
+

∫∫
A

ds

{
ϕ

∂G

∂N
− G

∂ϕ

∂N

}⎤
⎦

This division into two situations raised the problem of how to find distinct expressions
for ϕ in each case. The issue did not arise with Kirchhoff’s integral across the aperture
because he dropped the integral across the screen proper. Rayleigh solved the problem
by considering two cases. For ϕ I he envisioned a perfectly reflecting plane screen
on which a plane wave parallel to it is incident. He then offered expressions χm, χp

respectively for what such a wave would be on either side of the screen when it is
unperforated, so that for a screen S in the yz plane χm = e−ikx + eikx and χp = 0.

To these he added, again respectively, ψm = ∫∫
A

�m
e−ikr

r dS, ψp = ∫∫
A

�p
e−ikr

r dS,

integrating solely over an aperture A, that are presumed to modify these solutions to
take account of the perforation. The functions �m, �p must satisfy the reduced wave
equation.

For continuity conditions in ϕ I , again, Rayleigh needed the normal gradient of the
wave over the shadowed surface of the screen to vanish, but for the wave as well as its
normal gradient to be continuous across the aperture, i.e. at the screen, where x = 0
Rayleigh required in ϕ I that:

on S − A : ∂(χp + ψp)

∂N
= 0

on A : 2 + ψm = ψp and
∂(χm + ψm)

∂N
= ∂(χp + ψp)

∂N

Since χp (and so its normal gradient) is required to vanish over the entire surface S,
and the normal gradient of χm also vanishes over S (where x = 0), these requirements
can be satisfied provided that �m ,�p are equal and opposite on A, with the wave
functions ψm ,ψp then being equal and opposite by reflection of the one across the
screen to produce the other, with the additional stipulation that the wave function ψm

must have the value -1 on the aperture proper. The problem then consists, as Rayleigh
put it, “in so determining �m that this shall be the case.” Conversely, in the case
of ϕ I I , where the wave is presumed to vanish over the shadowed surface S − A,
Rayleigh altered χm to the difference e−kx − ekx instead of the sum, so that both χm

and χp vanish everywhere at the screen. In this situation ψm , ψp are, respectively,

54 Rayleigh (1896), secs. 277, 278 and 292, the last of which Rayleigh referred to in his paper on optical
diffraction, Rayleigh 1897.
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∫∫
A

�m
∂(e−ikr /r)

∂N dS,
∫∫
A

�p
∂(e−ikr /r)

∂N dS. To satisfy continuity over the aperture then

required �m ,�p to be equal and opposite there, where �m takes a value such that
∂ψm/∂N becomes ik .

Note, then, that Rayleigh’s duo each in its specific manner only partially satisfy
Kirchhoff’s boundary conditions over the body S−A of the screen: in the case ofϕ I the
wave function over S− Amust vanish, whereas its normal gradient need not, whereas
in the case of φ I I the reverse holds. The problems then require judicious choices of
the wave functions and appropriate conditions at the aperture using the same Green’s

function e−ikr

r . Rayleigh’s aim had not been to avoid the inconsistency that plagued
Kirchhoff’s solution, but rather to obtain expressions that followed directly from the
assumption of one of the two different boundary conditions on S − A. Kirchhoff’s
theory of course required that both be satisfied at once. Because Rayleigh had not fun-
damentally altered the physical presumptions that underpinKirchhoff’s (or Poincaré’s)
analysis, viz that the screen can annul the wave or its normal gradient, and that the
wave in the aperture remains unaffected, his two possible integrals were distinguished
solely by the a priori imposition of different conditions. That is, Rayleigh’s theory,
like Kirchhoff’s, remained tied to imposed requirements without investigating what
might underpin such stipulations on the grounds, just then becoming prevalent, of
electromagnetic optics.

In the early 1890s the young German physicist Arnold Sommerfeld (1868–1951)
developed a theory for diffraction that avoided Green’s theorem by recurring to elec-
tromagnetic relations.55 He was at the time assistant to the mathematician Felix Klein
(1849–1925) at the University of Göttingen. Like Kirchhoff and Poincaré, Sommer-
feld was a dedicated teacher, and as a professor of theoretical physics at Munich from
1906 he trained an imposing array of students, including Wolfgang Pauli, Rudolf
Peierls, Alfred Landé, Linus Pauling, I. I. Rabi and Max von Laue (the latter three
as post-graduates.56 In 1894 Sommerfeld, referring to Poincaré, had remarked in an
article that Kirchhoff’s boundary conditions are ‘inadmissible’ and would entail that
wave function must vanish everywhere, though the theory nevertheless yields good
agreement with observation (so far as was then known).57 Two years later Sommerfeld
published an intricate alternative that avoided the inconsistency but that was limited to
the two-dimensional case of an infinitely thin, semi-infinite plane barrier with infinite
electric conductivity struck by a linearly-polarized, plane wave parallel to it. To do so,
Sommerfeld calculated the scattering of such a wave under the usual electromagnetic
condition that the electric field vector in the plane of the screen vanishes, resulting
after extensive, and intricate, calculation in an expression for the scattered wave.58

55 Sommerfeld (1896); translated as Sommerfeld (2004).
56 For a comprehensive examination of the Sommerfeld school atMunich, and in particular its concentration
on the solution of specific problems, see Seth (2010).
57 Sommerfeld (1895), pp. 341–342.
58 In 1892 Poincaré had himself considered the case of diffraction from a sharp metallic edge at large
diffraction angles in an effort to account for experimental results that Gouy had obtained (Gouy (1886)). To
do so he limited his analysis to infinite conductivity and examined the two-dimensional case by considering
the wave from the edge produced by the scattering of a converging cylindrical disturbance whose axis
parallels the edge (Poincaré (1892a); on this and Gouy’s experiments see Darrigol (2015), pp. 14–16.)
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The resulting expression indicated that a modified form of Young’s original convic-
tion that the illuminated edge of a diffractor could be treated as though it emitted
waves. This result, however limited, constituted the foundation for a rigorous theory
of diffraction, and to reach it Sommerfeld deployed a form of imaging in the complex
plane in order to maintain the boundary condition on the electric field. Although the
theory proved influential over the years, the intricacy of the calculations continued
to limit its application.59 The use of an image procedure did nevertheless also lead
Sommerfeld in his optical lectures to deploy images using Green’s theorem proper.
His approach there invoked the same duo of integrals that Rayleigh had used in 1897
albeit derived, unlike Rayleigh’s, which worked with the form of the wave function,
from a different specification of Green’s function.60

Sommerfeld noted that if the Green’s function G(r) vanishes on S, then the term
containing the normal derivative of the wave function will also vanish there:

ϕ(P) = 1

4π

∫∫
S

ds

{
∂ϕ

∂N
G(r) − ϕ

∂G(r)

∂N

}

G(r) = 0 over S ⇒ ϕ(P) = −1

4π

∫∫
S

ds

{
ϕ

∂G(r)

∂N

}

In that case only the values of the wave function and of the Green function’s normal
derivative need to be specified. Simple in principle, but difficult to apply in prac-
tice since there is no general Green’s function that could satisfy such a requirement.
Accordingly Sommerfeld had to limit his theory to a situation in which the Green’s
function could be so specified, and the only one that worked required the screen to be
a plane.61

This can be done in the followingway. Consider with Sommerfeld an infinite screen
located at the origin and parallel to the xy plane (Fig. 9). Place point P at (Px,Py,Pz)
and consider an arbitrary point Q whose coordinates are (Qx,Qy,Qz). Now reflect P
across the screen to form its image P ′ whose coordinates will therefore be (Px,Py,-Pz).
Then the respective distances r, r ′ from P, P ′ to Q will be:

Footnote 58 continued
Sommerfeld referred to Poincaré’s results for support since he had obtained a similar final expression under
the same approximation (far field close to the edge of the geometric shadow): Sommerfeld 1896, p. 374.
59 Sommerfeld produced a version of his theory in his lectures on optics: Sommerfeld (1954) present the
lectures that he gave in 1934. Secs. 38–39 provide his “mathematically rigorous solution” for the infinitely-
thin, semi-infinite screen. See Born and Wolf (2002); chap. 11 develops the Sommerfeld theory up to the
early 1950s. For subsequent developments see Babich et al. (2007).
60 Sommerfeld (1954), pp. 195–201. Sommerfeld had likely been giving these lectures for decades in
some form, so that his version of the Rayleigh alternatives probably date to his early years at Munich, so a
decade or more after Rayleigh’s work on the subject. Sommerfeld did not mention Rayleigh in the published
lectures, perhaps because his version of the alternatives involved a considerably different Green’s function,
as we shall see.
61 Ibid., 198–200.
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Fig. 9 Sommerfeld’s
configuration for his Green’s
function

r =
√

(Qx − Px )2 + (Qy − Py)2 + (Qz − Pz)2

r ′ =
√

(Qx − Px )2 + (Qy − Py)2 + (Qz + Pz)2

Now define a new Green’s function as follows:

G(Q) ≡ exp(ikr)

r
− exp(ikr ′)

r ′

The new function is, as it were, formed by envisioning the image of a Green’s
function at point P across the screen and then summing the image with its progenitor.
This new expression meets all the requirements for a Green’s function, for it is a
solution of Helmholtz’s equation, converges to the appropriate form as r, r ′ reach
zero, and adds nothing at infinity. We can calculate the derivative of G in the direction
of the z-axis, viz. in the direction normal to the screen itself. Having done so, we move
Q to the screen itself, where the result is that G vanishes. Over the shadowed part of
the screen the wave function ϕ must vanish, while it must be continuous across the
aperture. Sommerfeld assumed a point source and so expressed the emitted wave as
eikr
r where r is the distance from the source to a point of the aperture. For the alternative

case in which the normal derivative of the Green’s function must vanish, Sommerfeld
merely had to form the sum instead of the difference, viz. G(Q) ≡ exp(ikr)

r + exp(ikr ′)
r ′ ,

since the normal is opposite in direction on either side of the aperture.
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Sommerfeld’s route to a duo of mathematically consistent solutions differed con-
siderably from Rayleigh’s. Sommerfeld had altered the Green’s function by forming
a difference or sum between the original function and its image across the screen but
had retained a spherical source wave. Rayleigh had instead retained the single-term
Green’s function but had required a plane source wave. Both proceeded to apply their
expressions to the standard configuration in which, namely, the distance from the aper-
ture to the field point is much greater than a wavelength. Moreover, though neither
noted the point, the Kirchhoff integral is easily shown to be the mean of the Sommer-
feld duo, which are limited to a plane screen, with Rayleigh additionally requiring the
incident wave to parallel the screen.62 Kirchhoff’s full integral had no such limitation,
but then it suffered from the Poincaré paradox.

ϕ I (r) = 1

2π

∫∫
A

ϕinc
∂

∂N

(
exp(−ikr)

r

)
ds

ϕ I I (r) = −1

2π

∫∫
A

exp(−ikr)

r

∂ϕinc

∂N
ds

Kirchhoff:
1

2

⎡
⎣ 1

2π

∫∫
A

ϕinc
∂

∂N

(
exp(−ikr)

r

)
ds − 1

2π

∫∫
A

exp(−ikr)

r

∂ϕinc

∂N
ds

⎤
⎦

Neither of the two Rayleigh-Sommerfeld expressions yields the Fresnel integrals—
only their sum does. Consequently evaluation of either requires novel series expan-
sions. In 1913, for example, Rayleigh applied φ I to the case of an infinite narrow
slit, which required extensive numerical computation via a series for the resulting
integral.63

In his rigorous diffraction theory of 1896 Sommerfeld had concluded with a few
remarks concerning the results of experiment that are worth quoting in full in order
to gain a purchase on the empirical issues of the period. Since Poincaré in 1892 had
obtained the same final results under the same circumstances, he concluded as follows:

The question of the experimental confirmation of our [1896] theory can be here
settled in a word. On the one hand Kirchhoff’s formulas have been often proven
by observations at a small diffraction angle; on the other hand Mr. Poincaré
compares his formulas with Gouy’s observations under large diffraction angles
and finds them to be essentially confirmed. In the same circumstances, that is
for small as for large diffraction angle our theory therefore is also confirmed by
experiment [sic].64

Consequently Kirchhoff’s full integral could account for experiments at small dif-
fraction angles, but not at the large ones in Gouy’s experiments, which latter could

62 For ϕ I the normal derivative of the Sommerfeld difference Green’s function reduces to twice the value
of the positive term, while for ϕ I I the Sommerfeld function is just twice the value of either term.
63 Rayleigh (1913).
64 Sommerfeld (1896), p. 374.
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be handled by Poincaré’s 1892 analysis based on electromagnetic relations (see note
58 above). Sommerfeld’s scattering theory, which avoided Green theorem methods,
could handle both.

In his optical lectures Sommerfeld did not directly address empirical issues, but he
did point out that any theory involving the imposition of boundary conditions on an
expression derived from Green’s theorem (and so leading to an interpretation in terms
of Huygens’ principle) was questionable, including the Rayleigh-Sommerfeld duo:

The question remains, are these assumptions also physically justifiable? The
answer again is that they are only approximations for sufficiently small wave-
lengths. The field does not vanish completely behind the screen, nor is the field in
the aperture entirely unaffected by the presence of the screen, at least not within
distances of the order of magnitude of a wavelength from the edge of the screen.
The introduction of the Green’s function therefore involves no final justification
of the method.65

Sommerfeld accordingly remained unconvinced that the boundary conditions asso-
ciated with any such form of diffraction theory were physically reasonable, whereas
the approach that he had developed in the early 1890s avoided the problem, at least to
a certain extent. Nevertheless, half a decade after the appearance of Kirchhoff’s paper
an alternative expression based on his theory was produced that, we shall see, would
lead decades later to a reformulation that could avoid the Poincaré paradox—but only
at considerable mathematical cost.

7 Kirchhoff’s integral transformed

A year after Kirchhoff’s death in the fall of 1887, and before the appearance of the
Poincaré paradox, an ItalianmathematicianmodifiedKirchhoff’s theory by converting
it from a surface to a line integral, a transformation that implicated a different way to
work with Kirchhoff’s boundary conditions. A native of Milan, Italy, Gian Antonio
Maggi (1856–1937) attendedKirchhoff’s lectures in Berlin. In 1886 he had become an
ordinary professor in analysis at the University of Messina.66 Two years later Maggi
published a transformation of Kirchhoff’s fundamental integral that avoided the use of
Kirchhoff’s function F with its peculiar properties. Of his time in Berlin Maggi wrote
in 1914 that he “was fortunate, not long before [writing his 1888 paper] to follow
Kirchhoff’s lessons at the University of Berlin, and so I was in a privileged position
to pay attention to that supremely important result [Kirchhoff’s diffraction theory],
which the present state of the theory of the electromagnetic field has recently enriched
with new applications.”67

65 Sommerfeld (1954), p. 200. The italics are Sommerfeld’s.
66 Maggi (1888). OnMaggi see Cisotti (1938), Anonymous, 2015. The reminiscence is fromMaggi (1914).
Maggi wrote the latter paper in order to compensate the difficulty of his 1888 presentation which, he wrote
in 1914, “had somewhat harmed its perspicuity.”
67 Maggi (1914). Since Kirchhoff died in 1887, Maggi’s “not long before” means several years prior to
1888.
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Kirchhoffwas known for his strict adherence to precision and rigor. For example, the
young Heinrich Hertz (1857–1894)—student of Kirchhoff’s colleague Helmholtz—
had sent him a paper on elastic collisions that Kirchhoff had extensively edited because
Hertz had not been sufficiently explicit in laying out the precise conditions of the
problem.68 Perhaps Kirchhoff had expressed to Maggi directly or in his lectures some
doubts concerning the propriety of his function F , or it may be that Maggi noted its
presence and decided to avoid it in order to purify Kirchhoff’s integral of one possible
objection.69 To do so Maggi deployed three points: two of the points are fixed, while
the third is not. The wave equation’s solutions V have the following usual form, with
r representing the distance between a fixed point x0, y0, z0 and a point x, y, z within
the enclosed volume:

∂2V

∂t2
= a2∇2V with r =

√
(x0 − x)2 + (y0 − y)2 + (z0 − z)2

V = ϕ(t − r/a)

r

Maggi then noted that the function can contain, separately, the variable coordinates
x, y, z and still satisfy the wave equation, so that V becomes V (t − r/a, x, y, z).
By considering the two fixed points, one of whose coordinates (x0, y0, z0) appear
in the expression for r whereas the coordinates of the other does not, Maggi was
able to obtain Kirchhoff’s fundamental integral without using the function F while
nevertheless leaving the form of thewave open. The reasoningwas sufficiently obscure
that he attempted a simplification in 1914 (see above, note 66).

This was not Maggi’s only innovation. In addition, he effected a significant trans-
formation of the fundamental integral. To do so he used the line joining his two fixed
points to specify the edge of a plane that could be used in a complicated manner to
create a surface that separated space into two contiguous regions within which the
analysis took different forms. These two points represented the loci of the source and
of the point at which the wave is observed past a surface that represents a screen, and
the regions in question correspond respectively to the space defined by the geometric
shadow and to the space outside it. Kirchhoff’s boundary conditions were separately
applied to these two regions. The result of the procedure yielded a complicated func-
tion (due to the choice of coordinates) for the value of the wave that involved in both
regions a line integral around the edge of an aperture. In the geometrically-illuminated
region the disturbance is determined by the sum of a direct wave from the source added
to the line integral, while in the geometric shadow only the line integral holds. This
accordingly implicated a discontinuity across the shadow boundary, though Maggi’s
use of prolate coordinates rather obscures the configuration. The transformation to a
line integral was effected by Maggi’s use of Stokes’ theorem based on the assumption
that the medium is incompressible, as was usual. If, then, �u represents a disturbance in

68 On which see Buchwald (1994), chap. 8.
69 The fact that the addition by Hensel in the published lectures a few years later writes of F that such
a function “actually” exists may indicate doubt at the time concerning the propriety of basing such a
fundamental result upon it.
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such a medium, ∇ · �u must vanish, in which case �u can be represented by ∇ × �v with
�v an appropriate function. Consequently Stokes’ theorem affords the transformation
of a surface integral for �u into a line integral for �v:

∫∫
σ

�u · dσ =
∫∫
σ

(∇ × �v) · dσ =
∮
∂σ

�v · d�l

In a brief consideration at the end of his article, Maggi concluded that, in the limit
of vanishingly small wavelength, the disturbance occurs entirely outside the region of
the geometric shadow. The signal purpose of his transformation to a line integral, then,
was to yield that result, which in effect retrieved geometric optics. Yet it seems that
very few people paid attention to this latter result, perhaps because it was obscurely
framed in terms of prolate coordinates. Which makes it hardly surprising that the first
to re-achieve such a transformation did not mention Maggi at all.

Wojciech (Adalbert) Rubinowicz (1889–1970) was born in Bukovina to Polish
parents, and received his Ph.D. in physics at the University of Czernowitz in 1916.
He planned to stay there as a post-graduate assistant, but the university then closed
during the First World War. He obtained a temporary position at the University of
Munich’s institute of theoretical physics, where he began work as assistant to Arnold
Sommerfeld in 1916.70 Ayear later,Rubinowicz published an article in theAnnalender
Physik that explored a line-integral expression for Kirchhoff’s fundamental integral.71

He was stimulated to do so by Sommerfeld’s 1894 analysis of diffraction based on
electromagnetic theory (on which see above), as Rubinowicz aimed to see whether a
similar result could be obtained directly from Kirchhoff’s integral by means of a line-
integral transformation. Although Rubinowicz’s work became much better known
among European physicists and mathematicians than Maggi’s, the conversion that
both effected, though in considerably different ways, would later become known as
the “Maggi-Rubinowicz transformation.”72

Rubinowicz did not maintain Kirchhoff’s original formulation that allowed for an
arbitrary wave but instead used the reduced Helmholtz equation and so presumed that
the time and space variables could be separated. Consequently, unlike Maggi he did
not have to concern himself with Kirchhoff’s delta-like function. Rubinowicz first
introduced the general surface integral over the boundary of a region G with a Green’s
function eikr/r , with ū representing the value of the wave function over the region’s
boundary:

1

4π

∫∫
G

ds

{
ū

∂(eikr/r)

∂n
− eikr

r

∂ ū

∂n

}
(18)

70 Eckert (2013), p. 226.
71 Rubinowicz (1917).
72 In 1923, the Austrian professor of physics Friedrich Kottler at the University of Vienna pointed out that
Maggi, not Rubinowicz, had first produced the transformation. See Kottler (1923).
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He then remarked that Kirchhoff had reduced (18) to an integral solely over an aperture
F , producing the following expression for the wave at a point O in the diffraction
region:73

u(O) ≡ 1

4π

∫∫
F

ds

{
ū

∂(eikr/r)

∂n
− eikr

r

∂ ū

∂n

}

Rubinowicz next effected a clever choice of region and geometric boundary for the
otherwise arbitrary surface G, one that was effectively the same as Maggi’s but con-
siderably clearer due to the avoidance of prolate spherical coordinates. Limit G to a
surface consisting of the region that would be geometrically illuminated by a source
L of the form exp(ikρ)/ρ shining through an aperture F which has a rim B.This
demarcates a region with one end a surface K∞ at infinity, capped at the other by the
finite aperture F, and delimited by the conical boundary K (Fig. 10). The integral over
K∞ vanishes as usual, leaving only the region F + K . Since we have not introduced
a physical aperture, the value of ū over F + K must be the same that it would be
in the absence of the screen, hence just exp(ikρ)

ρ
. Consequently the expression for the

field at a point OEwithin the F + K bounded region—which is, again, completely
unobstructed—must be:74

uE (OE ) ≡ 1

4π

∫∫
F+K

ds

{
exp(ikρ)

ρ

∂

∂n

(
exp(ikr)

r

)

− ∂

∂n

(
exp(ikρ)

ρ

) (
exp(ikr)

r

)}
= exp(ikρ)

ρ
(19)

Introduce a screen such that the surface F corresponds to a physical aperture. In
that case for a point O located anywhere in the diffraction region Kirchhoff’s integral
requires (with ū on F having the same value that it would were the screen absent):75

u(O) ≡ 1

4π

∫∫
F

ds

{
exp(ikρ)

ρ

∂

∂n

(
exp(ikr)

r

)
− ∂

∂n

(
exp(ikρ)

ρ

) (
exp(ikr)

r

)}

(20)
Now place the general Kirchhoff point O at OE within the region bounded by F + K .

Then for such a point, since (20) integrates over F only, whereas (19) integrates over
F + K , Rubinowicz could subtract (20) from (19) to write:

73 Rubinowicz (1917), p. 259.
74 Ibid., p. 260.
75 Ibid., p. 259.
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Fig. 10 Rubinowicz’s surfaces

u(OE ) = uE (OE ) − 1

4π

∫∫
K

ds

{
exp(ikρ)

ρ

∂

∂n

(
exp(ikr)

r

)

− ∂

∂n

(
exp(ikρ)

ρ

) (
exp(ikr)

r

)}
(21)

Rubinowicz’s expression (21) for u(OE ) applies only to a point within the F + K
bounded region. Outside of this region Kirchhoff’s general expression (20) for u(O)

would presumably apply. This might seem to be a pointless formality—we have as it
were introduced surface K in (19) only to remove it again in (21). But we have in fact
done somethingmore, because we assert that (21) does properly represent the resultant
wave within the region bounded by F + K when a screen perforated by F is present.
This is nothing more than Kirchhoff’s claim for such a region but Rubinowicz’s (21)
has an important representational effect.

Because the value of the normal gradient ∂ ū
∂n vanishes over K , Rubinowicz could

transform the K integral into one entirely around the rim B of the cap F . Integrating
from ρ = ρl (at a point on the rim) to infinity thereby produced (recall that ρ in the
K integral is the distance between L and a point on K ):

∫∫
K

ds =
∮
B

dl

∞∫
ρl

dρ (22)

Attention to the geometry yields an expression for the wave field within F + K that
involves an integral over the rim B added to the geometric-optics field:

u(OE ) ≡ uE (OE ) + 1

4π

∮
B

dl

{
exp[ik(ρl + rl)]

ρlrl

cos(n̂, �rl)
1 + cos(�rl , �ρl) sin( �ρl , d�l)

}
(23)
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In Rubinowicz’s (23), rl is the distance between the field point O and a point l on B,
n̂ is the normal there to the screen aperture F, �ρl is the distance from the rim point
to the luminous point at L , and cos(n̂, �rl) is the cosine of the angle between the two
vectors n̂ and �rl . The source wave uE (B) at the rim appears as the factor exp[ikρl ]

ρl
, so

that (23) may also be written as follows:

u(OE ) ≡ uE (OE ) + 1

4π

∮
B

dl

{
uE (B)

exp[ikrl ]
rl

cos(n̂, �rl)
1 + cos(�rl , �ρl) sin( �ρl , d�l)

}
(24)

Rubinowicz’s (24) entails an inherent discontinuity at the boundary K : on it the inte-
grand of the rim integral becomes infinite because there the two vectors �rl , �ρl point
in opposite directions. In the region external to F + K the untransformed Kirch-
hoff expression (20) presumably obtains, and so also do his conditions that both the
wave function and its normal gradient vanish over the shadowed surface of the screen.
Consequently, and despite the fact that Kirchhoff’s u(O) still holds everywhere, the
Maggi-Rubinowicz introduction of the F + K boundary introduces a representa-
tional discontinuity, though one that neither of the two explored since their interests
lay elsewhere. Neither did they ask whether the rim integral would vanish if the
observation point OE lay in the aperture proper, where on the basis of Kirchhoff’s
boundary condition—which is still presumed—the incident wave uE (OE ) should be
unaltered.

Although Rubinowicz’s (24) was in essence similar to Maggi’s transformation,
Maggi’s use of prolate spherical coordinates obscured a startling result upon which
Rubinowicz placed considerable emphasis (and which Maggi himself likely did not
perceive). Namely, that (24) amounted to a partial vindication of Thomas Young’s
original method of calculating diffraction by finding the interference between a direct
wave from the source and waves presumptively engendered by the direct wave at the
edges of the aperture—as Rubinowicz remarked at the very beginning of his article.76

This amounted to a considerable alteration in the original sense of theHuygens-Fresnel
principle from one in which the observed wave is governed entirely by wavelets that
are distributed over the aperture’s surface, to one in which the efficacious wavelets
that alter the incident wave are located on the aperture’s rim.

Rubinowicz’s article appeared in 1917, over three decades afterKirchhoff’s original
andMaggi’s own transformation, and neither he nor Maggi had concerned themselves
with the problem of Kirchhoff’s boundary conditions (which Maggi may not have
been aware of in 1888). Each of them had a different purpose in mind, Maggi to
avoid Kirchhoff’s function F , which led him to his line-integral transformation, and
Rubinowicz to retrieve a simulacrum of Young’s original theory of diffraction. Does
the Poincaré paradox carry over as well to the Maggi-Rubinowicz transformation?
Like Maggi, but with greater geometric clarity since he had not introduced the com-
plexity of prolate spherical coordinates, Rubinowicz had altered the way in which

76 Partial only because Young had assumed that the wave emanating from the aperture’s rim would be the
same as the source wave but shifted in phase by half a wavelength. Rubinowicz’s rim integral is considerably
different.
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Kirchhoff’s boundary conditions had been applied by both Kirchhoff and by Poincaré
by introducing two distinct regions across which the expression for the wave function
is discontinuous. Neither of these regions had a boundary coincident with the entire
surface of the diffractor proper since the one was capped by the aperture and the
other by the surface outside the geometric shadow. For that reason Poincaré’s proof
of inconsistency, which required no discontinuities as well as the enclosing surface
of the diffractor (within which Poincaré placed his point L to generate the paradox),
could not be so directly applied. The question accordingly arises as to whether the new
representation might capitalize on discontinuity to evade the Poincaré paradox. To do
so in a way that preserved the Green theorem structure in some form would certainly
require altering Kirchhoff’s boundary conditions.

8 A form of consistency achieved

Work continued in the twentieth century through at least two alternativeswhich, though
not always aimed principally at that purpose, could avoid the Poincaré paradox. In 1923
Friedrich Kottler (1886–1965), physics professor at the University of Vienna proposed
formulating the integral as a solution to a “saltus” problem—one in which the field
undergoes a discontinuous jump across a boundary, requiring the specification of its
values on either immediate side, much as, in electrostatics, a fictitious distribution of
charge at the boundary across which dielectric capacity changes produces a discon-
tinuity in the potential.77 Kottler proposed to treat Kirchhoff’s conditions as though
they were the result of a similar kind of discontinuity, thereby obviating the Poincaré
paradox but at the cost of introducing an assumption without physical justification.78

In 1933 Max Born (1882–1970), thinking in terms of his characteristic recursive
method, suggested that the Kirchhoff integral might be the first-order approximation
in a sequence of iterative solutions that converged to the exact solution represented by
his boundary conditions.79

In 1964 Marchand and Wolf remarked that “the difference between the consistent
solution of Rayleigh and Sommerfeld and the inconsistent solution of Kirchhoff may
be regarded as due to the superposition of plane waves whose amplitude distribution
has a very sharp maximum for … waves propagated along the plane of the screen.
Such waves do not contribute to the far field.”80 Two years later they followed with
an analysis that enabled a direct calculation of precisely such a series of waves by
means of a reworking of the boundary conditions through a clever use of the Maggi-
Rabinowicz transformation, thereby rescuing the essence of Kirchhoff’s formulation
and, with it, the meaning of an expression akin to Huygens principle.

Rubinowicz’s form of the transformation, recall, could be expressed in terms of
the source as follows (cf (23)) invoking a discontinuity for points past the screen as

77 Kottler (1923) and, decades later, Kottler 1965.
78 By contrast, in electro- and magneto-statics dielectric and para- or dia-magnetic substances yield the
discontinuity as a result of the jump in permeability at a boundary.
79 Born (1933), p. 152.
80 Marchand and Wolf (1964).
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one moves from within to without the geometric shadow since the denominator in the
formula vanishes for points on the shadow proper:

u(OE ) ≡ uE (OE ) + 1

4π

∮
B

dl

{
uE (B)

exp[ikr l ]
rl

cos(n̂, �rl )
1 + cos(�rl , �ρl )

sin( �ρl , d�l)
}

Rubinowciz’s transformation of Kirchhoff’s integral within the geometrically-illumin-
ated region

Kirchhoff’s surface-integral involves no such discontinuity of the kind for it leads
to the following expression (cf above, note 41):

ϕo = 1

2λ

∫∫
A

ds

riro

[
cos(�ri , �ni ) + cos(�ro, �no)

]
sin

[
2π

(
ri + ro

λ
− t

T

)]

Marchand and Wolf considered that the inconsistency built into Kirchhoff’s theory
by his boundary conditions could be shown in a different manner from Poincaré
by noting a related consequence. Take a point in the diffracted region (not, as with
Poincaré, within the geometrically-defined body of the diffractor itself) and move
it indefinitely close to the open aperture. Calculate the value of the wave function
at that point using the expression that results from Kirchhoff’s theory. It should by
hypothesis be effectively the same as the unaltered source wave, but in fact it is
not.81 Why, one might ask, did they turn to this way to show the inconsistency? It
is quite direct and perhaps more revealing than Poincaré’s route, but, more to the
point, it is precisely this consequence of the full set of Kirchhoff’s conditions that can
be avoided by exploiting the discontinuity at the geometric shadow inherent in the
Maggi-Rubinowicz transformation.82

To that end, Marchand and Wolf began not with the transformation but with an
explicit alteration of the boundary conditions, something that neither Maggi nor Rubi-
nowicz had proposed. Consider with Marchand and Wolf a luminous point L whose
distance from a given point of the aperture rim is s0. Consider a point P ′ with coor-
dinate (x ,y) on the shadowed part of the screen itself, including any aperture(s), and
express the presumptive value U (P ′) of the wave at such a point of the screen by a
sum of the source wave added to an integral over the aperture’s rim B, of the following
form, with points Q′ lying on the rim:

81 The expression given immediately above is not applicable to a point close to the aperture because of
the assumption that the aperture point to observation point distance is vastly larger than a wavelength. If
however we take as an example of the problem what occurs in the case of a circular disk as screen and make
no approximations, then two problems arise using the full Kirchhoff integral. The solution along the axis
produces two terms, the second of which is infinite and obviously unphysical. Moreover—and this is the
sort of problem that Marchand and Wolf had in mind—even the first term does not vanish at the disk itself,
where by hypothesis no wave at all should exist. In other words, the boundary condition presupposed cannot
be recovered (see Lucke 2004, pp. 3–4). A similar situation arises for diffraction by a circular aperture, in
which the incident wave is not recovered at the aperture.
82 Marchand and Wolf (1966).
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U (P ′) ≡ f0(x, y) = ε0(x, y)uinc(x, y) + 1

4π

∮
B

uinc(Q
′)exp(ikQ

′P ′)
Q′P ′ �K · d�l

where

�K = 1

4π

−−→
SQ′ × −−→

Q′P ′∣∣∣−−→SQ′
∣∣∣ ∣∣∣−−→
Q′P ′

∣∣∣ − −−→
SQ′ · −−→

Q′P ′

and where
ε0 = 0 for points on the screen but outside the aperture
ε0 = 1 for points in the aperture proper
S is the location of a point light source outside the aperture

This expression for the field intensity U (P ′) on both the screen’s shadowed surface
and on the aperture constitute new boundary conditions for Kirchhoff’s problem of
diffraction. Where Kirchhoff had set the value at the aperture to the incident wave,
Marchand and Wolf add to that wave the rim integral. And where Kirchhoff had set
the wave on the screen but outside the aperture to zero, they now add the rim integral.
Neither Maggi nor Rubinowicz had suggested that the rim integral might be extended
to points of the screen outside the aperture, and neither had they considered what
takes place if the observation point were to lie in the aperture proper, where, again, on
Kirchhoff’s boundary condition the rim integral should vanish to retrieve the unaltered
incident wave.

In a critical next step, Marchand and Wolf note that their expression for �K is iden-
tical to the one that appears in the Maggi-Rubinowicz transformation of Kirchhoff’s
diffraction integral, i.e. in the factor of uE (B)

exp[ikrl ]
rl

in Rubinowicz’s rim integral
(24). From here, they claim that the diffracted wave field at a point P = (x, y, z) on
the side of the aperture opposite to the light source (z > 0) can be expressed as

UK (x, y, z) = ε0(x, y, z)uinc(x, y, z) + 1

4π

∮
B

uinc(Q
′)exp(ikQ

′P)

Q′P
�K · d�l

Although the Marchand-Wolf integral appears to differ from the term that appears
in Rubinowicz’s expression of Kirchhoff’s formula (24), they are nevertheless essen-
tially equivalent and so both exhibit precisely the same discontinuity: at the geometric

shadow proper, i.e. if P ′ lies on K ,
−−→
SQ′ parallels

−−→
Q′P ′, and consequently the expres-

sion for �K is discontinuous there. Now, they continued, the rim integral alone should
be extended to any point outside the geometrically-illuminated region. How so, when
Rubinowicz’s derivation apparently concerned only the latter? Though Marchand and
Wolf did not explicitly provide the reason, it is not at all hard to see: if Kirchhoff’s
boundary condition outside the geometric region but on the screen is replaced by
Marchand-Wolf’s (with ε0 = 0), then on the conical sides delimiting the region the
normal derivative of the wave function again vanishes, while the aperture rim still
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delimits the region, leaving, via the Maggi-Rubinowicz transformation, only the rim
integral over the closed part of the screen since the latter is bounded by the aperture.

Consequently the Marchand-Wolf expression for U (P ′) now holds throughout the
diffraction region (in the form of UK (x, y, z) above) provided that ε0 is unity every-
where within the geometrically-illuminated region but vanishes outside it. Moreover,
because of the new condition at the aperture, the Marchand-Wolf integral for a point
in the diffraction region that is indefinitely close to the aperture now does reproduce
the presumed value there (i.e., UK (x, y, z = 0) → f0(x, y)). This is precisely what
does not happen when using Kirchhoff’s original with his condition that the wave at
the aperture is unaltered from what it would be in the screen’s absence. And this is
all obtained from the transformation of Kirchhoff’s original integral combined with
Marchand and Wolf’s alteration of the boundary conditions. The Kirchhoff inconsis-
tency is thereby avoided altogether since the new boundary conditions involve only
the value of the wave function proper and not its normal gradient, whether over the
screen proper or over the aperture—at the expense of discontinuity at the geometric
shadow edge.

That is not the only cost, for the transformation to a line integral also implicates a sig-
nificant amendment to the deployment of Fresnel’s integrals, which had (and continue
to this day) to permeate practical computations of diffraction since the 1830s. Within
the approximation regime that governed the Fresnel (and so Kirchhoff) expressions,
namely small wavelengths and loci far from the screen but not too far from the edge
of the geometric shadow, these original expressions work well despite the boundary
inconsistencies necessary to their derivation. But, one might ask, does the Marchand-
Wolf replacement do any better? Indeed, their ‘consistent’ version of the Kirchhoff
integral does, they showed, produce good agreement with an experiment in which
the behavior of 3.2cm microwaves was examined across the aperture in a conducting
screen. The experiment indicated that the wave pattern across it varies nearly sinu-
soidally, which is well predicted by Marchand-Wolf but not of course by Kirchhoff’s
theory, which requires the unaltered value of the source wave.83 The Marchand-Wolf
expression explains the results as due to the interference of the source wave with the
wave scattered at the aperture’s edge. But the sinusoidal behavior in the aperture nev-
ertheless does imply that the Kirchhoff assumption of an unaltered incident wave at
the aperture works quite well for points in the diffraction regime that are not too close.
This retrieves and justifies the Kirchhoff integral within an approximation regime with
its longstanding, and persuasive, interpretation in terms of Huygensian wavelets.

9 Conclusion

We have examined a diffraction theory that, for nearly two centuries (including Fres-
nel’s original) continued in use even though, a century in, its only derivation from
a wave equation had nevertheless proved to be fundamentally inconsistent with the

83 Neither are these results accommodated by the Rayleigh-Sommerfeld alternative in which the waveform
at the aperture is assumed to be the same as that of the incident disturbance. The second alternative, in
which the waveform’s normal derivative is specified, fares somewhat better but still misses the mark. Ibid.,
pp. 1715–1717.
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very conditions that yielded the expression that, so far as was then known, worked
extremely well. One major reason for that resilience was the theory’s instantiation
within a mathematical framework of the principle, due to Huygens, on which Fresnel
had originally grounded wave optics. Whereas Fresnel’s wave optics had deployed
assumptions concerning point-source radiators that presumptively constitute a wave
front, Kirchhoff’s theory was formulated as a solution to a partial differential equation
based on Green’s theorem. Critically, so far as was known the resulting formula for
diffraction worked extremely well.

Empirical adequacy and pragmatic tractability certainly were—and remain—
central factors for the tenacity of Kirchhoff’s theory. Scientists have, and continue
to this day, used the expression provided by Kirchhoff’s theory—or even Young’s
much simpler structure involving two-ray interference—in astronomical observations
and optical experiments. In for example Albert Michelson and his colleague F.G.
Pease’s interferometric measurements at Mt. Wilson Observatory as late as 1920, the
wave-optical method they employed to estimate a star’s diameter did not go beyond
the Fresnel integrals proper.84 Throughout the late nineteenth and twentieth centuries,
Kirchhoff’s theory continued to appear inmajor textbooks andmonographs, continued
to be used and discussed in physics and engineering periodicals, and was generally
considered to be a reasonable expression for the effect of diffraction by an aperture.
The problem of consistency, to the extent—and it was apparently not a very great
extent—that it was recognized seemed principally to concern a defect in the manner
in which the Huygens principle or some variant thereof could be represented within a
consistent mathematical context.

The principal alternative toKirchhoff’s theory involved dropping one or the other of
the two mutually-inconsistent boundary conditions. Rayleigh, who was not concerned
with the Kirchhoff problem per se, had produced both in 1896 by choosing particular
wave functions, while Sommerfeld elaborated the two alternatives using novel Green’s
functions, with the consequent result that Kirchhoff’s solution proved to be the mean
of the Rayleigh-Sommerfeld duo, though without any clear reason as to why that
might be so. When Marchand and Wolf compared newly-produced microwave data
with predictions from Kirchhoff’s and the Rayleigh-Sommerfeld expressions in 1966,
they found that Kirchhoff’s, inconsistent mathematically though it certainly is, better
matched measurements at the aperture.85 To a certain extent such a result was not alto-
gether surprising since Sommerfeld did not regard the boundary conditions that he had
himself used to be physically reasonable, even if mathematically unexceptionable.86

By contrast, Sommerfeld’s own analytical solution in 1896, based on electromag-
netic relationships, though limited to diffraction by the edge of a half-infinite plane,
did not require any a priori assumptions concerning boundary conditions. Yet the
extreme complexity and intractability of this approach significantly restricted its prac-
tical applicability, whereas Kirchhoff’s integral easily produced an expression under
the approximation to small wavelengths in relation to aperture size and distance from

84 Michelson and Pease (1920).
85 Marchand and Wolf (1966), pp. 1715–1717.
86 Sommerfeld (1954), p. 200.
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the screen for both source and observation point that easily facilitated computations
and was widely used in optical research. In that approximation Kirchhoff’s theory was
essentially a differential-equation-based reformulation of Fresnel’s formula, a major
theoretical result in early wave optics that had enjoyed significant empirical success.

The inconsistency problemwas never, in one sense, truly resolved because it follows
directly from the requirements of Green’s theorem. And yet in the absence of Green’s
theorem a comparatively direct reading in terms of anything like Huygens’ principle,
with its persuasive physical significance, evaporated. Kottler’s recommendation to
reformulate the theory as a saltus problem amounted to introducing a fundamental
discontinuity in applying Green’s theorem in a manner that could retain the meaning
ofHuygens’ principle. Born’s suggestion to interpret theKirchhoff expression in terms
of a first-order expansion of whatever the actual solution might be was not directly
aimed at preserving the physical significance of the principle. It was nevertheless also
an effort to reconstrue Kirchhoff’s mathematical structure in a manner that separated
his solution, which certainly did grant meaning to the principle, from its grounding in
a mathematical inconsistency.

In 1964Marchand andWolf employed the long-availableMaggi-Rubinowicz trans-
formation to replace Kirchhoff’s single surface scheme with one in which the solution
is applied separately to two contiguous regions across which the expression for the
wave function is discontinuous. That breaks the inconsistency otherwise demanded by
Dirichlet-Neumann solution requirements and accordingly breaches the proof of the
Poincaré paradox. The resulting expression aligned well with Young’s theory in the
early nineteenth century, in which light rays from an optical source reach points within
the geometrically-illuminated region directly and from the aperture’s rim, and outside
the region solely from the rim. This new physical meaning, gained through discontinu-
ity and transformation to a line-integral, made the scheme particularly appealing—but
not for computational purposes under the usual approximation to vanishingly small
wavelength, for there the Fresnel integrals work well for reasons that, in light of
Marchand-Wolf, have become clear. The price to be paid was the abandonment of
Kirchhoff’s original, and extremely simple, boundary condition over the surface of
the screen via the introduction of discontinuity.

The history of Kirchhoff’s solution illustrates that mathematical consistency is not
inevitably a necessary condition for success in physics. While logical compatibil-
ity, mathematical rigor, and conceptual coherence are important epistemic virtues for
theory choice and development, they are not inexorably requisite. Empiricist and prag-
matic attitudes prompted optical scientists significantly to downplay the mathematical
inconsistency of Kirchhoff’s theory, a theory that exemplifies a long research program
that dominated optics for two centuries. Rather than abandoning altogether such a
useful scheme because of mathematical requirements, researchers instead preferred
to use it and eventually to reconstruct the mathematics on a different, if doubtfully
rigorous (because involving discontinuity) basis, and thereby to grant it continued life.
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