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Incommensurability between successive scientiªc theories—the impossibility of
empirical evidence dictating the choice between them—was Thomas Kuhn’s
most controversial proposal. Toward defending it, he directed much effort over
his last 30 years into formulating precise conditions under which two theories
would be undeniably incommensurable with one another. His ªrst step, in the
late 1960s, was to argue that incommensurability must result when two the-
ories involve incompatible taxonomies. The problem he then struggled with,
never obtaining a solution that he found entirely satisfactory, was how to ex-
tend this initial line of thought to sciences like physics in which taxonomy is
not so transparently dominant as it is, for example, in chemistry. This paper
reconsiders incommensurability in the light of examples in which evidence
historically did and did not carry over continuously from old laws and theo-
ries to new ones. The transition from ray to wave optics early in the nine-
teenth century, we argue, is especially informative in this regard. The evi-
dence for the theory of polarization within ray optics did not carry over to
wave optics, so that this transition can be regarded as a prototypical case of
discontinuity of evidence, and hence of incommensurability in the way Kuhn
wanted. Yet the evidence for classic geometric optics did carry over to wave op-
tics, notwithstanding the fundamental conceptual readjustment that Fresnel’s
wave theory required.

In the late 1970s, Kuhn remarked in reference to his 1968 lecture “The
Relations between the History and the Philosophy of Science,”

In the almost nine years since its presentation many more philoso-
phers of science have conceded the relevance of history to their con-
cerns. But, though the interest in history that has resulted is wel-
come, it has so far largely missed the central philosophical point:
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the fundamental conceptual readjustment required of the historian to recap-
ture the past or, conversely, of the past to develop toward the present. (Kuhn
1977, p. xiv) [italics added]

The question that preoccupied him for 45 years, what do such conceptual re-
adjustments tell us about science as a kind of knowledge?, forms a large part of
Kuhn’s legacy. The book he was writing when he died in 1996—“the
grandchild of Structure, since the child was still-born”—was intended to
answer this question, together with its correlate, what do these readjustments
involve and why do they occur? Kuhn, of course, was scarcely the ªrst to be-
come preoccupied with the conceptual readjustments that have occurred
in science. The revolutions marked ªrst by the special theory of relativity
and then by general relativity and quantum mechanics were as central to
philosophy of science during the ªrst half of the twentieth century as the
extraordinary success of Newtonian physics was to philosophy of science
during the nineteenth century. What separated Kuhn from those preced-
ing him was his insistence that these revolutions marked radical disconti-
nuities of the same sort as the transition from Aristotelian to modern
physics.

1.0 Kuhn on Incommensurability
Starting with Structure and continuing to his last unªnished book, four
propositions earmarked Kuhn’s thought. First, scientiªc research is a
highly specialized social practice modeled on a set of prior achievements
that function as exemplars; learning how to engage in this practice is
learning how to extrapolate, so to speak, from these exemplars. Second,
scientiªc revolutions involve the replacement of one set of exemplars by
another set, resulting in a distinctly new practice. Third, scientiªc revolu-
tions in this sense have occurred far more often in the history of modern
science than one might have thought from taking relativity and quantum
mechanics as prototypical; indeed, revolutions in this sense lie behind the
continual “speciation” of scientiªc disciplines into increasingly specialized
sub-disciplines. Fourth, (now quoting) “the normal-scientiªc tradition
that emerges from a scientiªc revolution is not only incompatible but of-
ten actually incommensurable with that which has gone before” (Kuhn
1970, p. 103). Kuhn originally latched onto the term ‘paradigm’ in con-
junction with the ªrst of these four propositions, but he subsequently
abandoned it because his expanded use of it ended up obscuring the
root-idea that made it appropriate in the ªrst place. Still, in Kuhn’s mind
this ªrst proposition remained the cornerstone. The other three derive
from it. The fourth proposition, needless to say, is the one that has pro-
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voked by far the most controversy. Kuhn never abandoned it. Indeed, the
announced goal of his unªnished book was to clarify and defend it.

Kuhn’s defense of incommensurability in Structure pivoted on his con-
tention that Newton’s laws of motion cannot properly be derived as limit-
ing-case approximations of the laws of motion in relativistic mechanics.
For “the physical referents of these Einsteinian concepts [of space, time,
and mass] are by no means identical with those of the Newtonian concepts
that bear the same name” (Kuhn 1970, p. 102). Kuhn subsequently con-
cluded that the argument in Structure “was both uninformative and in a
central respect misleading.”1 Its sweeping appeal to meaning-change
failed to discriminate the speciªc, narrower kind of change in meaning
that produces what he called in Structure “a displacement of the conceptual
network through which scientists view the world.” The defense of
incommensurability in Structure seems to us unfortunate in still a further
way. It focused the issue too much on the transition from Newton to Ein-
stein, a transition that is far too contentious to serve as a prototype of
incommensurability. A central claim of the present paper is that the tran-
sition from ray to wave optics at the beginning of the eighteenth century
is a much better prototype for purposes of clarifying the intricacies of
incommensurability.

Another shortcoming of Kuhn’s “meaning-change” defense of incom-
mensurability in Structure was the failure to tie it to his claim about the
role of exemplars in scientiªc practice. The approach he took to incom-
mensurability from the late 1960s on always had as its starting point the
process of learning from examples—in particular, learning natural kind
terms and the taxonomic distinctions they mark from instances.2 Because
natural kind terms are open-ended in their application, several comple-
mentary examples or illustrative situations are required to assimilate
them. They are acquired not individually, but as an interrelated group,
for they have the signiªcance they do only in relation to one another. The
fact that different individuals have acquired them along different trajecto-
ries involving different speciªc examples normally does not interfere with
communication. Different trajectories of acquisition, however, do affect
communication when anomalous examples are encountered, and such
anomalies can throw the entire set of distinctions into question.
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1. This quotation is taken from the beginning of the third chapter of Kuhn’s unªnished
book manuscript.

2. The development of Kuhn’s approach to incommensurability after Structure is sum-
marized in Buchwald and Smith (1997, p. 367–375). See also the various lectures and pa-
pers now published in (Kuhn 2000).



Factors like these gave Kuhn reason to think that taxonomy provides a
way of explicating and defending incommensurability. Two scientiªc sys-
tems can be commensurate with one another—or, in the phrasing he often
preferred, mutually translatable—only if they share the same taxonomic
structure. Scientiªc categories can be thought of as forming a taxonomic
tree. Distinct branches emerge from the trunk, marking principal kinds.
Each branch may divide further, yielding sub-kinds. Every kind, however,
emerges either directly from a single immediately preceding node on the
tree or from the trunk. Because no kind descends from more than one im-
mediate ancestor, there is no possibility of partial overlap among kinds.
This requirement on kinds, which is equivalent to requiring each category
to be immediately subordinate to at most one ancestor, Kuhn concluded is
crucial to taxonomic distinctions in science. Any addition to a tree of
kinds must accordingly be grafted onto its structure without violating its
integrity: additions can be made, but multiple connections between exist-
ing kinds are not permitted, nor can new kinds be added unless they
emerge directly from a preceding kind or from the trunk. Two taxonomies
in science are then commensurable if either of two conditions is satisªed:
(1) every kind in the one can be directly translated into a kind in the
other, which means that the whole of one taxonomic structure is isomor-
phic to some portion of the other; or (2) one structure can be directly
grafted onto the other without otherwise disturbing the latter’s existing
relations. When the ªrst condition is fulªlled, one scheme can simply be
subsumed under the other. When the second is fulªlled, a new scheme can
be formed out of the previous two while preserving intact all the prior re-
lations among kinds.

The conspicuous limitation of this approach to incommensurability is
that the fundamental terms of the advanced sciences—terms like ‘force’
and ‘mass’—do not signify components of what Kuhn called a contrast set.
Terms like these do not signify sub-kinds of anything else; they rather sig-
nify distinct physical magnitudes, which Kuhn came to call singletons, or
artefactual kinds. Though not marking taxonomic distinctions, these terms
still have many of the features of taxonomic kind-terms. They are learned
through examples, not through deªnitions, and several complementary
examples are usually required to assimilate them. Different individuals ac-
quire them along different routes, involving different examples, yet com-
munication is unaffected until anomalies emerge. Terms like ‘force’ and
‘mass’ are not learned individually, but together, owing to the relations
they have with one another as expressed in the law-like generalizations
that are invoked in solving the exemplary problems through which stu-
dents acquire mastery of them. The relations among theoretical terms ex-
pressed in these generalizations also provide multiple avenues for assign-
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ing speciªc values to the various physical magnitudes—that is, different
ways of measuring them, ways that can often be embodied into instru-
ments.

Given all these similarities, the obvious question is, what is the corre-
late for singletons to the no-overlap principle for commensurability in the
case of taxonomic structures? This question remained Kuhn’s central pre-
occupation through his last years, and it was lack of satisfaction with his
answer to it that prevented him from ªnishing his book before he died.
The quotation here, from his Nobel symposium lecture of 1986, displays
the general approach he was attempting to take to it:

Now suppose that neither the revisions that preserved [Newton’s]
second law nor those that preserved the law of gravity proved effec-
tive in eliminating anomaly. The next step would be an attempt at
revisions which altered both laws together, and those revisions the
lexicon will not, in its present form, permit. Such attempts are of-
ten successful nonetheless, but they require recourse to such devices
as metaphorical extension, devices that alter the meanings of lexical
items themselves. After such revision—say the transition to an
Einsteinian vocabulary—one can write down strings that look like
revised versions of the Second Law and the law of gravity. But the
resemblance is deceptive because some symbols in the new strings
attach to nature differently than do the corresponding symbols in
the old, thus distinguishing between situations which, in the ante-
cedently available vocabulary, were the same. They are the symbols
for terms whose acquisition involved laws that have changed form
with the change of theory: the differences between the old laws and
the new are reºected by the terms acquired with them. Each of the
resulting lexicons then gives access to its own set of possible
worlds, and the two sets are disjoint. Translations involving terms
introduced with the altered laws are impossible. (Kuhn 2000, p. 74)

An obvious challenge in carrying through this approach is to ªnd a princi-
pled way to distinguish the revisions to laws that have lexical conse-
quences which (in Kuhn’s words) give rise to disjoint sets of possible
worlds from ones that do not. Complicating this challenge was Kuhn’s de-
sire, as the quotation illustrates, to retain the claim of Structure that the
transition from Newtonian to Einsteinian physics not only involves a shift
from one lexicon to another, but further a shift resulting in incom-
mensurability. From the time of Structure forward, the obstacle to this
claim of incommensurability has been the well-known reasoning in which
Newton’s second law of motion is derived as a limit-case of the corre-
sponding law of special relativity as the velocity approaches zero, and
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Newton’s law of gravity is derived as a limit-case of gravity in general rel-
ativity as the strength of the static ªeld approaches zero. Kuhn needed but
never found a decisive argument that these limit-case derivations are not
by themselves enough to establish some sort of commensurability.

Limit-case reasoning represents one extreme of arguments put forward
with the intent of showing that some newly advanced law or theory is a
reªnement of a previous law or theory, or conversely that the latter should
be viewed as an approximation to the former. Claims of this sort are not
restricted to laws and theories, however; they are even more commonplace
when new methods or instruments for measuring given quantities are said
to provide advances in accuracy and range over earlier ones. Indeed, at the
other extreme from limit-case reasoning are the arguments put forward in
the case of minor improvements in measurement and calibration. Between
these two extremes is a whole range of arguments to the effect that the
new is a reªnement of the old and the old in some critical respect approxi-
mated the new. A primary thesis of this paper is that issues of incom-
mensurability need to be considered in the light of the substantive role such
arguments play in the development of science.

2.0 Continuity of Evidence
In Structure Kuhn in the end dismissed the limit-case reasoning from Ein-
stein to Newton as, in effect, a re-writing of history that preserves the illu-
sion of cumulative progress. But that reasoning cannot be dismissed so
easily, for it appears to have played a substantive role in the transition. In
particular, the limit-case derivations showed that all of the prior evidence
for Newtonian mechanics and gravitation, respectively, was also evidence,
to indicated levels of accuracy, for relativistic mechanics and gravitation.
The process of marshalling evidence for the special and general theories of
relativity clearly did not have to begin from the ground up. All the old ev-
idence carried over immediately, with minor qualiªcations, so that the
task of establishing relativity was one of adducing evidence supporting
the points of contrast between it and Newtonian theory. Some of the evi-
dence for relativity did countermand Newtonian theory, and the evidence
for Newtonian theory appears in a different light as a consequence. Never-
theless, the limit-case derivations seem historically to have been taken
within scientiªc practice as showing that Newtonian theory formally ap-
proximates Einsteinian in such a way that the evidence for the former car-
ries over as evidence for the latter—this in spite of the huge conceptual re-
adjustment separating the two.3
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In fact an even stronger claim can be made: the evidential reasoning
supporting Newtonian theory must in some sense remain valid in spite of
this conceptual readjustment. For the 43 arc-seconds-per-century in the
precession of the perihelion of Mercury that was invoked as crucial evi-
dence for general relativity is what remains after all of the various Newto-
nian effects are calculated and subtracted from the observed precession. To
invalidate the evidential reasoning supporting Newtonian theory would
consequently invalidate the legitimacy of invoking the speciªc value of 43
arc-seconds per century, for it expressly presupposes Newtonian theory.

Let the phrase continuity of evidence refer to transitions from an old theory
or practice to a new one in which the old approximates the new in a way
that (1) allows the evidence for the old to carry over to the new and (2)
permits the evidential reasoning that supported the old to remain valid
under a suitable reconstruction in the new. However great a conceptual re-
adjustment may be, continuity of evidence necessarily poses a prima facie
challenge to any claim of incommensurability—or any denial of no com-
mon measure. For, one must de facto be able both to argue that the new
system accommodates the existing evidence for the old and to compare the
two systems with respect to new evidence. This goes far toward explaining
why Kuhn met so much resistance to his claim of incommensurabilty
across the transition from Newtonian to Einsteinian physics, for dismiss-
ing the limit-case reasoning would alter the burden of proof that relativity
theory was historically required to meet. Kuhn would have been in a con-
siderably stronger position had he chosen as a prototype of incommens-
urability an example in which evidence is indisputably not continuous
across the transition—an example that thus does not threaten to beg the
question of comparability of evidence across the transition. We think that
the transition from ray to wave optics early in the nineteenth century is
such a prototype precisely because it brings out more clearly the subtleties
involved in maintaining and losing continuity of evidence.

Before turning to this transition, we will consider an example in which
the claim of continuity of evidence is not prima facie contentious. We can
thereby clarify what such continuity involves. Some of the reªnements of
the gas law from Boyle to the twentieth century serve this purpose well. In
its original form Boyle’s law asserted that pressure is inversely propor-
tional to volume—p � 1/V—under the (at the time irrelevant) ceteris pari-
bus condition that temperature remains constant. Newton reformulated
the law as pressure is proportional to density—p � {. He did so because
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strength of surface gravity under his law of universal inverse-square gravity. See Smith
(2002, p. 53f).



he wanted to extend the domain over which the law was projected to hold
beyond entrapped volumes of air so that he could apply it locally, without
reference to containing boundaries, to atmospheric variations with alti-
tude.4 For cases in which a speciªc quantity of air is entrapped, 1/V can
serve as a measure of { just as the length of the air-containing tube served
as a measure of V in Boyle’s original experiments. The numerical relation
between parameters in the two formulations is thus exactly the same for
cases of entrapped gas. Differences in conceptualization aside, the dispar-
ity between the two lies only in the difference in the domains over which
they are projected to hold (viz. conªned volumes for Boyle, boundary-
independent localities for Newton). Boyle’s formulation can be viewed as
just a special case of Newton’s. One can equally speak of Boyle’s formula-
tion as approximating Newton’s insofar as the domain over which Boyle’s
was projected to hold served historically as a ªrst approximation to—a
ªrst stab at—a yet-to-be-identiªed more extended domain. Correlatively,
one can speak of Newton’s formulation as a reªnement of Boyle’s, one that
eliminated a needless parochialism in Boyle’s. The evidence for Boyle’s for-
mulation was clearly evidence for Newton’s.

Temperature was incorporated, yielding the gas law in the form of
p � {T early in the nineteenth century.5 The subsequent shift from p � {T
to p � (n/V)T, where n/V is the mole density, was both similar to and dif-
ferent from the Boyle-Newton shift. Mole density lies at a considerable con-
ceptual distance from density, and its quantiªcation involves new theoreti-
cal considerations. The immediate gain from shifting to mole density, or any
of its counterparts, was to capture a broader generalization. The formula-
tion, p � (n/V)T, telescoped a large number of gas-speciªc generalizations
of the form p�{RT into a single, universal generalization—this by taking
into account the ratios among the constants of proportionality of the gas-
speciªc expressions and relating them to the ratios among the weights of
equal volumes of gases at the same pressure and temperature.6
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4. See Book 2, Section 5 of the Principia, where Newton uses his form of the gas law to
calculate the variation of atmospheric density with altitude under different rules for the
variation of gravity. Newton also uses his form of the gas law in calculating the speed of
sound in air in Book 2, Section 8, producing a result in conºict with measurement as a
consequence of, in effect, treating the expansion in sound waves as isothermal rather than
adiabatic.

5. We here skip over a number of other, related historical developments—most impor-
tantly, Lavoisier’s introduction of gas and the experimental efforts on the compressibility of
different gases—that yielded gas laws of the indicated form for different gases.

6. The standard present-day way of relating the universal gas law to the gas-speciªc
laws is by pointing out that the universal gas constant is equal to the product of the
gas-speciªc constants of proportionality R and the molecular weights of the gases. See, for
example, Keenan (1970, p. 95).



A simple numerical relationship holds between { and (n/V) for each
speciªc gas. Consider, however, an entrapped gas that changes chemical
composition at certain values of density and temperature. In such cases
p � {T and p � (n/V)T can part ways, for 1/V and { may no longer serve
as an appropriate measure of (n/V). The two formulations thus make dif-
ferent empirical claims. All evidence for p {T carries over to p � (n/V)T,
but not conversely. As before, p {T can be viewed as just a special case of
p (n/V)T, holding so long as chemical composition remains ªxed. Con-
sidered from the point of view of the scientists who effected the general-
ization, it would be better to regard p � {T as an approximation to
p � (n/V)T, and p � (n/V)T as a reªnement of p � {T, in that as { served as
an initial approximation to—as a stab at—the yet-to-be-determined pa-
rameter (n/V) that allowed the broader generalization to be captured.
Viewed retrospectively, { had served as a proxy or surrogate for (n/V). This
is not at all to say that the concept of density approximates the concept of
mole density. Hardly—the term ‘approximation’ here refers to an initial
quantitative relation that continues to be accommodated under the pro-
viso that speciªc circumstances be taken into account that were not envi-
sioned by those who propounded the earlier relation. Accordingly, { con-
tinues to serve as a measure of (n/V) provided that chemical composition is
considered.

The relationships among the three expressions—pV � T, p � {T, and
p � (n/V)T—contrast with the relationship between p � (n/V)T and the
virial expansion,7

p � (n/V)T [ 1 � (n/V)B(T) � (n/V)2C(T) � . . . ]

where the so-called virial coefªcients, B(T), C(T), etc., “by means of sta-
tistical mechanics may be expressed in terms of the intermolecular poten-
tial functions. Consequently it is possible to obtain a quantitative inter-
pretation of the deviations from the ideal gas law in terms of the forces
between molecules” (Hirschfelder et al 1954, p. 131). For entrapped gases
of ªxed chemical composition, the three different formulations of the ideal
gas law, with their different parameters, provide three different ways of
stating essentially the same open-ended body of data, and the numerical
relationships among p, V, and T remain the same. By contrast, while the
principal parameters are the same in p � (n/V)T and the virial expansion,
the numerical relationships among p, V, and T do not remain the same.
Here one says that the ideal gas law numerically approximates the virial ex-
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century, is not the form initially put forward by Clausius and championed by Maxwell (see,
for example, 1875). For historical background and technical details, see Mason and Spurl-
ing (1969) as well as Hirschfelder et al (1954), Maitland et al (1987), and Brush (1983).



pansion over a certain limited range of the parameters. This is the custom-
ary sense in which one numerical relationship approximates another. All
the evidence for the ideal gas law can be evidence, to an indicated level of
accuracy, for the virial expansion, but not all of the evidence for the virial
expansion is evidence for the ideal gas law.

In the framework of statistical mechanics, within which the virial ex-
pansion has its home, the ideal gas law does more than just numerically
approximate the expansion over a certain limited range. The ideal gas law
is a limiting case of the virial expansion—the physically characterized
limit under which all the terms in the expansion after the ªrst vanish. Any
number of mathematically disparate curves can be ªtted to a body of data
to any given level of accuracy and hence used to recapitulate those data.
The limit-case reasoning shows that, from the standpoint of the virial ex-
pansion, the ideal gas law is more than just one of these curve-ªts. The ex-
pansion ªrst deªnes a physically-characterized range over which the ideal
gas law approximates not merely the existing data, but any other data
taken within this range; second, by giving a physical reason for why the
ideal gas law approximates it over this range, namely that the range is one
over which the intermolecular potentials are comparatively small, it im-
plies that this is not a mere numerical coincidence; and third, it implies
that all differences between it and the ideal gas law, whether within this
range or beyond it, are again not mere numerical coincidences, but arise
from speciªc physical factors. Because of these three considerations, espe-
cially the third, measured deviations from the ideal gas law were legiti-
mately used to infer magnitudes of intermolecular potentials in different
gases long before anything was known about the molecular structure giv-
ing rise to these potentials.8 This was the crucial substantive role the
limit-case argument played in the development of modern gas theory.

The remark at the beginning of the last paragraph that the virial expan-
sion has its home in statistical mechanics calls attention to the major con-
ceptual shift that it presupposed. Both pV � T and p � {T are neutral
with respect to the molecular structure of matter. In fact, so too was
p � (n/V)T at least until the beginning of the twentieth century, for many
chemists before then had employed mole density while dismissing the
atomic structure of matter as metaphysics. The principal conceptual
change from Boyle’s and Newton’s formulations to pV � T and p � {T, be-
sides the inclusion of (absolute) temperature, was the generalization from
air to gases, a taxonomic shift in full conformity with Kuhn’s no overlap
principle. The further change to p � (n/V)T presupposed the concept of
equivalent or molecular weight from chemistry, the values for which vary
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from gas to gas. In each of these cases, the conceptual change had the pri-
mary effect of allowing a broad generalization across gases to be captured.
While these conceptual changes had important implications for laboratory
practice, and they represented a fairly revolutionary conceptual shift
within chemistry itself, they did not require anyone to learn a radically
new way of thinking when considering the gas law in and of itself.

By contrast, divorced from the framework of statistical mechanics, the
virial expansion amounts to nothing more than an open-ended scheme for
curve-ªtting, and the claim that for any chemically given gas the virial
coefªcients B(T) etc. vary only with temperature has at best limited em-
pirical justiªcation. The systematic derivation of the virial expansion
within statistical mechanics shows that the second term in the expansion
represents the interactions of molecules in pairs, the third term, in triples,
etc.9 This derivation invokes both conceptual apparatus and mathematics
far beyond anything needed to learn or to understand the ideal gas law in
any of its forms. It is this derivation, however, that licenses the inference
of intermolecular forces from measured deviations of real gases from the
ideal gas law. Thus, the physics of both the virial expansion and its rela-
tionship to the ideal gas law could not have occurred without a revolu-
tionary conceptual shift not merely to an ontology of molecules, but also
to complicated forms of statistical aggregation via cluster integrals and
partition functions. Still, as revolutionary as this conceptual change was, it
did not produce a discontinuity of evidence from p � (n/V)T to the virial
expansion. Rather, the transition from p � (n/V)T to the virial expansion
opened new evidential pathways in a manner closely akin to the way in
which the transition from p � { to p � {T opened an evidential pathway
that yielded absolute temperature. This new evidential pathway as a mat-
ter of logic must presuppose the validity of the prior evidence for
p � (n/V)T. Furthermore, the carry-over of evidence from p � (n/V)T to the
virial expansion made an important contribution to the evidence for this
expansion: the good empirical agreement of p � (n/V)T with experiment
at low densities across all gases provided the principal evidence that the
differences in the relationships among pressure, temperature, and mole density
from one gas to another result solely from intermolecular forces that are
peculiar to each chemically deªned gas.

The transition from the ideal gas law to the virial expansion is thus an
example of a Kuhnian fundamental conceptual readjustment across which, as a
matter of historical fact, evidence was treated as continuous. We should
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note that the taxonomic consequences of this readjustment did not violate
Kuhn’s requirements for commensurability. Just as the transition from in-
dividual cases of p � {T to the single law p � (n/V)T provided strong
grounds for treating gas as a taxonomic category, the transition from
p � (n/V)T to the virial expansion provided strong grounds for treating
the chemically distinct gases as different taxonomic sub-categories of gas.10

The relationships among the four different formulations of the gas law
are somewhat different from the relationship between Newtonian and
Einsteinian theory, and hence what we have said in no way begs the ques-
tion of incommensurability in the latter case. Kuhn would presumably
not have said that the enriched lexicon obtained by the addition of, for ex-
ample, mole density threatened incoherence if pressure, temperature, density
and volume remained unchanged in meaning—any more than the histori-
cal addition of new ways of measuring these four quantities produced dis-
parate lexicons. For, these four quantities, and mole density as well, were
never intertwined with one another in the way Kuhn argues that the sec-
ond law of motion made it necessary to gain mastery of mass and force to-
gether with one another in Newtonian mechanics. Thus, nothing in what
we have said about the gas law is in conºict with the approach Kuhn was
taking to ‘singletons’ in his later work on incommensurability.

The history of the gas law helps make clear that four distinct elements
are involved when laws are said to approximate, in an evidence-preserving
manner, subsequent laws, or when the subsequent laws are said to be a
reªnement of the earlier laws: (1) the domains over which the lawlike gen-
eralizations are projected to hold; (2) the parameters entering into the gen-
eralizations, with particular emphasis on the way they are quantiªed in
practice; (3) the numerical relationships asserted to hold among these param-
eters and, by implication, among other closely related parameters; and (4)
the physical considerations to which all differences in the numerical relation-
ships are being attributed.

Correspondingly, four conditions apparently have to be met in order for
the evidence for the earlier laws to carry over to the subsequent laws. First,
from the subsequent point of view, the domain that the earlier laws cov-
ered must be contained within—and in this sense approximate—the do-
main over which the subsequent laws are projected to hold; and from the
earlier point of view, the latter domain must be an extension with limita-
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tion or a reªnement of the former domain. Second, from the subsequent
point of view, the ways in which the parameters of the earlier laws were
quantiªed can still serve for quantifying the corresponding parameters of
the subsequent laws, yielding at least approximate measures over the
range of the evidence for the earlier laws; and from the earlier point of
view, the parameters of the subsequent laws provide an alternative way of
describing or stating the observations entering into the evidence for the
earlier laws. Third, the numerical relationships asserted to hold among
relevant parameters by the earlier laws must at least approximate those as-
serted to hold among their counterparts by the subsequent laws over a
speciªed range—that is, the numerical values entailed for any one parame-
ter by numerical values for the others must be approximately the same
over this range. And fourth, from the subsequent point of view, the nu-
merical discrepancies between the earlier and subsequent laws must result
from physical considerations expressly represented in the new laws.

Clearly more needs to be said, and more examples need to be consid-
ered, in order to make the notion of continuity of evidence precise. This
rough statement of four necessary conditions is intended only as an initial
approximation to prepare the way for examining the historical transition
from ray to wave optics. Moreover, we do not assert that these conditions
work quite so independently of one another as the gas law example might
suggest. They are probably far more often intertwined with one another
than not. Finally, we do not offer these as the only necessary conditions.
Something must also be said concerning the manner in which a shift to
subsequent laws neither invalidates nor nulliªes the various steps in the
evidential reasoning that supported the earlier laws. It would therefore be
premature to take the preceding explication as in any way settling the
question of incommensurability between Newtonian and Einsteinian
physics. But that is not the goal of this paper. The goal is to clarify what is
involved in incommensurability by looking at a case where evidence did
not carry across the divide.

3.0 From Ray to Wave Optics
The transition from ray to wave optics took place over a roughly 30 year
period after polarized light, which had ªrst been noted by Christiaan
Huygens 120 years earlier and which constituted an anomaly for him, be-
came the central preoccupation of optical research. Ray optics dates back
centuries in the form of geometric optics, that is, mathematical accounts
of phenomena of reºection and refraction that give geometrical rules for
tracing light from a source (or from the eye, depending on physical as-
sumptions) through the process of reºection or refraction to the formation
of an image of the source. Ray optics underwent a rapid series of develop-

Perspectives on Science 475



ments following Etienne Louis Malus’s discovery in 1809 that polarized
light can be produced not just by passing light through Iceland Spar, but
also by reºecting it at a speciªc angle from glass, or indeed from any
reºecting substance at angles that vary from material to material. In re-
sponse to this discovery, Malus appropriated Newton’s idea, advanced
originally in response to Huygens’s discovery, that rays of light are asym-
metric and devised a quantitative theory of partial reºection in which the
reºecting device selects which rays are reºected and which refracted ac-
cording to the speciªc alignment of their asymmetries.

Dominique-François Arago in 1811 discovered the phenomenon of
chromatic polarization, wherein polarized light passed through a
birefringent crystal and then reºected at the polarizing angle exhibits col-
ors that depend upon the various alignments of the planes of incidence
and reºection and of the crystal. Jean Baptiste Biot then developed a com-
prehensive, quantitative theory of polarized light based on the principle
that the relevant devices always select rays of particular symmetries in
speciªc circumstances. Over the next 20 years—during which ray optics
became embroiled in open conºict with Fresnel’s wave optics—further
novel effects emerged. Theoretical ray optics continued to be developed in
response to these effects, most notably by David Brewster in response to
the phenomenon of elliptically polarized light. Ray optics then gradually
died off, not because decisive experiments had refuted it, but largely be-
cause wave optics was proving so fruitful in ongoing research.

The proponents of ray optics inherited from the Newtonian tradition
the idea that a ray is simply the trajectory of a light corpuscle, and some of
them ºeshed this idea out further with conjectures about the asymmetry
of these corpuscles and the action of forces on them. Still, however much
of a heuristic crutch was provided by such pictures of what a ray is, the
quantitative theories and the evidential reasoning for ray optics were pred-
icated on a more limited, abstract characterization of rays. The two essen-
tial theses of ray optics, both in geometric optics and in the sequence of
developments in response to the new phenomena of polarization discov-
ered in the 19th century, is that a beam of light consists of individual rays,
and that these rays remain intact during the action of devices that reºect,
refract, and polarize the beam. That is, individual rays approach a device,
and (ignoring absorption) those very same rays depart it. The long history
of geometric optics provided strong grounds for tracing a geometrically
deªned ray up to a device that reºects or refracts it, and then continuing
to trace this same ray during and after reºection and refraction. The con-
tinuing tradition of ray optics in the early 19th century can be thought of
as taking polarization to have provided new information about these rays.
In particular, polarization suggested that beams of light—that is, collec-
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tions of rays—come in three distinct kinds depending on the distribution
of the asymmetries of the individual rays composing them: natural or
unpolarized light, polarized light, and partially-polarized light. These
kinds could be distinguished among one another by their behavior in a de-
vice like Malus’s polarimeter, which detected asymmetries.11

The tradition of wave optics dates back to Huygens and Robert Hooke
in the late seventeenth century. According to it, in the form developed es-
pecially by Huygens, light does not consist of collections of individually
distinguishable line-like objects (rays); instead, light is taken to be a sur-
face (or front) that moves through space, with rays having the mathemati-
cal character of lines drawn from the point of emission to any point on the
front. Although Leonhard Euler superadded periodicity to the scheme in
order to accommodate phenomena of color (which were foreign to Huy-
gens’s concerns), only Thomas Young in England and, shortly thereafter,
Augustin Jean Fresnel in France provided fundamental theoretical and ex-
perimental novelties. Wave optics came fully into its own only with Fres-
nel’s work in the years following the discovery of polarizing reºection and
chromatic polarization.

Two points are important for our purposes. First, wave optics is cate-
gorically incompatible with the idea that one and the same ray enters and
departs from polarizing devices. Second, wave optics as developed mathe-
matically by Fresnel and those following him involves both a substantially
different mathematics and a radically different way of thinking from ray
optics. In wave optics, we remarked, the fundamental entity is not a ray,
but a front that does not consist of individuated constituents; fronts with
complicated geometrical forms can be represented mathematically as the
superposition of generally ovoidal wavelets (or, more properly considering
that Huygens did not invoke periodicity, of what might be termed
frontlets); ªnally a succession of fronts forms a continuous wave that is
characterized by length, frequency, and phase. In short, the transition
from ray to wave optics involved a Kuhnian conceptual readjustment if
ever there was one. The demands imposed by this readjustment are still
the major hurdle students face in learning optics.

The relation between ray and wave optics is complex, both historically
and logically. Indeed, the standard contemporary treatise on optics (Born
and Wolf 1980) devotes 150 pages just to the relation between wave and
geometric optics. Here we are only going to highlight the relation be-
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tween wave optics and the speciªc theoretical proposals put forward suc-
cessively by Malus, Biot, and Brewster, the evidence adduced in support of
them, and how this evidence was viewed from the perspective of wave the-
ory; we will end the discussion by considering how, or even whether, evi-
dence remained continuous from geometric to wave optics.

3.1 Malus on Partial Reflection
First noted by Huygens, until the early nineteenth century the phenome-
non of polarization was thought to occur only when light has passed
through the crystal Iceland Spar. Because the emergent light would refract
in a second crystal in ways that depended on the respective orientation of
the two crystals, the phenomenon was thought to indicate that a light ray
which has passed through Iceland Spar must have some sort of asymmetry
about its axis. In 1809 Malus discovered that the phenomenon is not pe-
culiar to Spar, but can also be produced by reºecting light at a particular
angle speciªc to each reºecting substance. This suggested that the asym-
metry in question is a general property of light that is activated or
modiªed under particular circumstances. Malus named the property ‘po-
larization’ and built a device to detect its presence, the polarimeter.

Within the tradition of ray optics deriving from Newton, rays were al-
ready thought to be distinguished from one another by an intrinsic, unal-
terable property that dictates color. Malus now associated two directions
to each ray: the traditional one along the ray’s length and a new one ortho-
gonal to its length—the direction in which the asymmetry of the ray is
present. For Malus, rays join in bundles, forming beams. Optical intensity
involves just the number of rays in a beam, with each ray having, as it
were, the same intrinsic intensity. Polarization is a property of beams—
speciªcally, the degree to which the asymmetries of the rays forming the
beam are aligned with one another. Bodies that affect a beam’s polarization
must somehow select a subset of rays according to the orientation of their
asymmetry and then, depending on the body, alter these directions.

Malus divided beams of light into three kinds, each of which behaves in
a distinct manner in his polarimeter. A polarized beam is one in which the
asymmetries of the constituent rays are nearly enough parallel as to be in-
distinguishable by a polarimeter. The rays forming an unpolarized beam
have asymmetries that are more or less randomly distributed, so that a
polarimeter reveals no preferred direction. Finally, in a partially-polarized
beam, the rays group into subsets, with each subset having virtually the
same orientation of asymmetries, and different numbers of rays in each
subset; a polarimeter then shows more light in some orientations than in
others. These three categories exhaust the possible basic kinds of beams in
ray optics.
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The ªrst novel application of this ‘selectionist’ approach was to the phe-
nomenon of partial reºection, which poses the question of how much light
is reºected, and how much is refracted, by a given material at a speciªc an-
gle of incidence. Malus saw that the traditional way of thinking about this
problem had to be altered because of his discovery that the amounts in
question depend systematically, and quite markedly, on the state of polar-
ization of the incident beam. What happens to an unpolarized beam is ac-
cordingly to be determined by considering what happens to polarized
beams of various orientations. Malus was able to develop a quantitative
theory that solves the problem by specifying the component subsets in the
reºected and refracted beams with respect to both polarization and inten-
sity.

As Figure 1 shows, the numerical values obtained from Malus’s formu-
las differ from those that are now accepted (obtained from formulas devel-
oped by Fresnel on wave principles) by amounts less than could be de-
tected before the development of photometric comparators. Yet the
respective ray and wave formulas are in no other way connected with one
another. Malus’s ray formulas cannot be derived from Fresnel’s wave for-
mulas either algebraically or through any sort of limiting process. From
the point of view of the wave formulas, the small numerical differences il-
lustrated in Figure 1 are mere numerical coincidences, having no physical
signiªcance in their own right. Indeed, the ray and wave formulas differ
remarkably in their detailed implications. For example, one consequence
of Malus’s theory is that a polarized beam on reºection other than at the
polarizing angle is only partially polarized, though the added subsets
must be small. By contrast, on wave principles the beam must remain
completely polarized. Thus, the close numerical agreement notwithstand-
ing, the fact that measured values agree well with Malus’s formulas did
not by itself provide evidence supporting Fresnel’s formulas. Historically,
the evidence for Malus’s formulas did not simply carry over as evidence for
Fresnel’s.

The several differences between ray and wave optics with respect to po-
larization phenomena derive from the difference between the fundamental
objects with which they work. In selectionism this is the ray. In wave op-
tics the fundamental object is the wave front, and here the ray, as noted
above, is altogether a mathematical construct—a line drawn from the
point of emission of the front to a point on its surface. Such a line has no
individuality in wave optics, and nothing corresponding to it persists in-
tact during double refraction. The most that can be said is that such a line
can be shown to represent approximately the direction along which energy
ºows by drawing a small region on the wave surface, erecting orthogonals,
and considering the ray to represent approximately the path traced by the

Perspectives on Science 479



orthogonal trajectory. As we shall see later, this construal of rays within
wave optics allows it to incorporate geometric optics. But the loss of ray
individuality precludes any comparable incorporation of Malus’s ray op-
tics.

Because rays have no individuality in wave optics, they cannot be
grouped into sets, optical intensity cannot be thought of in terms of the
number of rays in a beam, and polarization therefore has nothing to do
with the production of subsets of rays with common asymmetries. In wave
optics, partial reºection is determined by a process of decomposition of
the oscillation at the interface, with components in and normal to the
plane of reºection being affected in different ways. The recoverability of
geometric optics within wave optics notwithstanding, there is no situa-
tion in which, by any approximation that would map a wave optics conªg-
uration into one in selectionist optics, Malus’s selectionist formulas for
partial reºection can be obtained from Fresnel’s wave formulas. Conse-
quently, as a matter of logic the evidence for Malus’s formulas cannot carry
forward to the wave theory of partial reºection; nor can the numerical dif-
ferences between the two sets of formulas, or between measured observa-
tion and Malus’s formulas, be taken to have any physical signiªcance
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within wave theory. Historical documentation drives this point home: in a
situation where Malus claimed on theoretical grounds that there had to be
a little light, Fresnel, thoroughly puzzled by Malus’s claim, insisted that
there had to be none except what was due to instrumental imperfections.
Hence, Malus construed as evidence data that Fresnel later dismissed as
experimental artifact.

3.2 Biot on Chromatic Polarization
Chromatic polarization was discovered by Arago in 1811 during the
course of his investigation of the polarization of Newton’s rings. Having
inserted a thin slice of the crystal gypsum within his polarimeter, he found
to his surprise that the lower mirror reºected colored light, with the color
depending upon the orientation of the gypsum slice in its own plane. Fol-
lowing selectionist reasoning, Arago proposed that gypsum, and as it
turned out thin slices of other crystals as well, rotates the polarization
through an angle that depends on the ray’s color. He was not, however,
able to develop, nor perhaps did he try to produce, a quantitative law.
That remained for Biot, whom Arago felt intruded into this new area in an
unfair manner. Biot was concerned, among other things, to show that
Arago’s new discovery did not cast any doubt on the continued viability of
other claims concerning Newton’s theory of color, including the
far-from-universally accepted color circle. Biot immediately sought to
generate a quantitative law, and he succeeded in developing an elaborate,
fully quantitative account that (like Arago’s qualitative proposal) depends
upon the selectionist grouping of rays by their asymmetries and colors. In
Biot’s scheme, subsets of rays within a crystal lamina are grouped ªrst in
respect to their common asymmetries and then by common color. The full
implications of Biot’s formulas, however, just like those of Malus, could
not at the time be tested except in extreme cases, because intensity could
not be measured and because there was no widely accepted way of calcu-
lating the color that results from the combination of rays of different basic
colors.

Biot obtained his formulas by creatively applying the selectionist prin-
ciple of ray individuation to experiments in chromatic polarization. He,
quite unlike Arago, speciªcally sought to isolate the rays whose asymme-
tries are affected by the thin crystal lamina, and thereby to quantify just
what happens to them. After several attempts that did not stand up to ex-
periment, Biot produced the following formulas, which worked very well
in characterizing extreme situations:

O � Ucos2a � Acos2(2i-a)

E � Usin2a � Asin2(2i-a)

Perspectives on Science 481



where O and E are the respective intensities (or, in selectionist understand-
ing, numbers of rays) of the “ordinary” and “extraordinary” light emerg-
ing from the double-refracting crystal; U and A are the ray numbers in the
two subsets by asymmetry that (according to Biot’s hypothesis) are formed
in chromatic polarization; i and a are respectively angles of incident polar-
ization and crystal lamina orientation; and subset U has the incident po-
larization (i), and subset A has polarization 2i with respect to the polariza-
tion of U.

The essential idea behind these formulas is simple. Polarized light
passes through a thin crystal lamina and is then received by a double-
refracting crystal, which will split the light into O and E parts, as crystals
from the time of Huygens had been thought to do. The principal section
of the receiving crystal forms the angle a with respect to the plane of inci-
dent polarization, which itself lies at angle i with respect to the optic axis
of the thin lamina. According to Biot’s account, within the lamina the
light is divided into two subsets, each of which has a speciªc polarization.
One subset, U, retains the polarization that the light had before it entered
the lamina—it is not affected at all. The rays in the other subset, A, have
their asymmetries ºipped to the other side of the lamina’s optic axis,
which is to say that the polarization of subset a forms the angle 2i�a with
respect to the receiving crystal (and of course 2i with respect to the com-
mon polarization of U and the incident beam). Since the incident beam is
fully polarized, all rays of a given color must lie entirely within one of the
two subsets—there cannot, for example, be red-making rays in both U
and A since there was no physical distinction between red-making rays at
their incidence on the lamina. Without elaborate experiments, however,
which Biot never did perform, we cannot tell what subsets by color com-
pose U and A.

Fresnel’s formulas for chromatic polarization can be put into the same
general form as Biot’s:12

O � [��cos2(�(e-o)/ ]cos2a � [��sin2(�(e-o)/ ]cos2(2i-a)

E � [��sin2(�(e-o)/ ]sin2a� [��sin2(�(e-o)/ ]sin2(2i-a)

Here, however, we have explicit expressions, in fact inªnite sums, for
Biot’s ray sets U and A. The sums are taken over all wavelengths in the in-
cident light, and e-o is the path difference between the two waves with
mutually orthogonal polarizations that are produced by refraction within
the crystal lamina. In Fresnel’s case there is no sense at all in speaking of
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the original light having been divided by the lamina into two subsets, one
of which has its polarization affected, while the other does not. Quite the
contrary, on Fresnel’s theory the thin lamina behaves precisely like a dou-
bly-refracting crystal usually does, which means that the light within it
can be thought to consist of two beams, one of which is polarized along
the lamina’s optics axis, whereas the other is polarized orthogonally to it.

If it were possible to map Fresnel’s beams to Biot’s subsets, then both of
Fresnel’s beams would have to be rotated in polarization with respect to
the original beam, the one through an angle i and the other through an
angle i�90 degrees. Neither angle corresponds to either of Biot’s require-
ments, and this difference is a direct reºection of the conceptual incom-
mensurability at the deepest level between Biot’s account, which individ-
uates rays, and Fresnel’s, which does not. Fresnel’s factors as a matter of
fact result entirely from the particularities of interference and have no
meaning at all in respect to ray individuality. This difference between Biot
and Fresnel could show itself if the emergent light were operated on with
other kinds of devices that manipulate the phase of the light.

Biot responded to Fresnel’s apparent deduction of expressions for his U
and A—which is what Biot insisted Fresnel had done—by arguing that
Fresnel’s expressions do not work empirically with respect to the kinds
and saturations of colors they entail. Biot’s argument at this point did not
refer speciªcally to chromatic polarization, but rather to the tints pro-
duced in the phenomenon of Newton’s rings, which involve reºection or
transmission. Asserting that Fresnel’s trigonometric factors apply just as
well to the rings as to thin crystal laminae—a point on which Fresnel cer-
tainly did not disagree, since on wave principles they do—Biot attacked
their implications here. In effect what he did was to take a given air gap
and then to multiply it successively by factors corresponding to a group of
wavelengths that match (in Biot’s choice) the colors arranged around the
rim of Newton’s color circle. Calculating the resulting set of factors, Biot
would then use each as a weight to be applied in the usual fashion along
the circumference of the circle, placing each weight at the center of the
corresponding color. The result would give both the color of the mix, and
its degree of mixture with white light (in later parlance, its saturation).
This is what one ought to see, according to Biot, in Newton’s reºection
rings at that thickness. But, he argued, this result is not correct for, in par-
ticular, the saturation of the compound light was in several cases consider-
ably different in calculation from what it should be according to Newton’s
table of tints. Although there was no direct way to measure this, beyond
saying that light appears weakly colored in situation x as compared to sit-
uation y, nevertheless Biot obtained considerable differences here (imply-
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ing, e.g. in the case of a gap thickness of 11 and 1/6 millionths of an Eng-
lish inch, that the resultant light consisted of 16 parts violet mixed with 9
parts white, whereas in Newton’s table the light here should be nearly
pure violet).

Biot’s argument had two major ºaws, both of which Fresnel pointed
out. First, it required use of Newton’s color circle, and there was great
controversy surrounding its employment, not least because there was no
consensus concerning the circle’s ability to capture many naturally occur-
ring colors. This leads to the argument’s second, and in fact central, ºaw.
Fresnel had observed his own uncle, Léonor Merimée—at one point head
of the Ecole des Beaux Arts and author of a Treatise on oil painting—give
very different names to colors than Biot would give, indicating wide varia-
tion in chromatic nomenclature—and accordingly in the appropriate
kinds of colors naturally present. Conclusions about colors that had per-
force to be drawn from use of the color circle in conjunction with New-
ton’s table of tints were hardly compelling when agreement about the very
colors involved was so labile. As Fresnel remarked in counter-argument to
Biot, “It would not seem to me to be reliable to use this construction [the
color circle] to judge in the ªnal instance the correctness of a formula that
gives the intensities of simple [homogeneous] light, in relying on a table
whose perfect accuracy has not yet been demonstrated, and whose terms
[viz. the named colors] can be differently interpreted by different observ-
ers, according to their manner of sensing and naming the colors” (Fresnel
1866, I:602)

Biot’s challenge was aimed directly at Fresnel’s claim to have provided
formulas for calculating intensities (viz. U and A) that in Biot’s scheme re-
mained uncalculates. Of course, an inªnite number of different possible
expressions for these factors would all be compatible with the speciªc re-
quirements of Biot’s system for chromatic polarization, so that on this
point nothing that Fresnel offered directly contradicted any of Biot’s
claims. Biot accordingly chose to counter Fresnel’s claims by displacing
the argument on uncontested grounds to another phenomenon (Newton’s
rings) and then claiming that a computational device (the color circle)
leads to results concerning color saturations that are in conºict with the
requirements of Newton’s table of tints. Here we see that Biot was trying
to draw on evidence from another regime—color calculations—to claim
that Fresnel could not accommodate it. Fresnel took the obvious step—
aided considerably by his uncle’s painterly knowledge—to undercut the
evidentiary stability of Biot’s device.

We may put it this way. Biot had formulas that Fresnel could com-
pletely reproduce, with the addition of a speciªcation of the forms of fac-
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tors that Biot had left uninterpreted. This move apparently parallels the
replacement in the case of Boyle’s law of the reciprocal of volume by den-
sity: we may say that the original formulation was missing a factor repre-
senting the mass contained in the volume, though in the absence of
speciªc prohibitions on Boyle’s part nothing forbade that factor, or many
others for that matter, from being present. Similarly, nothing in Biot’s
original analysis forbade his U and A from having the forms given to them
by Fresnel, or many other forms as well (subject to the constraint that
U A must add up to the original optical intensity). Biot nevertheless re-
jected Fresnel’s suggested reªnement because he knew perfectly well that
the trigonometric dependencies obtained by Fresnel did not easily ªt the
conception of sets of discrete rays that underpinned his own U and A,
which at least suggested a much more abrupt change than Fresnel’s trigo-
nometric forms.

Did the evidence for ray theory carry over to wave theory? Chromatic
polarization presents us with a more complicated situation in this regard
than did partial reºection. The sole prima facie grounds for suggesting that
evidence supporting Malus’s formulas for partial reºection might carry
over to Fresnel’s—which were entirely different in form—was their near
numerical agreement; and this was then dismissed on the grounds that,
because there is no way of deriving Malus’s formulas from Fresnel’s,
whether as a limiting case or as reºecting some restricted physical situa-
tion, the agreement in question was a mere numerical coincidence, totally
lacking physical signiªcance. Because Biot’s formulas for chromatic polar-
ization are of the same general form as Fresnel’s, however, and Biot took
Fresnel to be proposing a way of quantifying his U and A, the question of
carry-over of evidence requires a slightly more nuanced answer. By virtue
of their common general form, both Biot’s and Fresnel’s formulas make
the same claim about the systematic dependency of the intensities O and E
on the angles of incident polarization and crystal orientation. Obviously
any evidence bearing purely on Biot’s statement of this dependency there-
fore had to carry over to Fresnel’s statement of it. In particular, Biot’s dis-
cussion of the extreme situations to which he was able to apply his formu-
las carries over perfectly well to Fresnel’s expressions. Both, for example,
imply that the ordinary and extraordinary beams in the analyzing crystal
can be equally intense only if both are also white, and vice versa. Indeed,
any observable implication of Biot’s formulas is also one of Fresnel’s, and
vice versa, provided that we do not employ Fresnel’s speciªc expressions for
the factors in his formulas, but only require that they sum to unity.

The carry-over from Biot to Fresnel stops there, however. The quanti-
ties U and A in Biot’s formulas represent the number of rays in two dis-
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joint subsets demarcated by a contrast in asymmetry. In order for Biot to
obtain appropriate expressions for the number of rays by color in each of
these sets, he would have to have carried out photometric experiments
with homogeneous colors corresponding to the ones on the periphery of
Newton’s color circle. Because photometric comparators were not avail-
able, he could not do so. But suppose they had been available, what then?
Biot might have obtained expressions that could be used to compute re-
sultants from the color circle, but—and this is the key point—he would
have to have redone these experiments for every laminar thickness. There
would not have been any way for Biot to obtain generally applicable ex-
pressions, whereas Fresnel’s applied to thicknesses over which coherence
holds. Consequently, there was no possible means for Biot to achieve Fres-
nel’s level of generality.

Moreover, from the point of view of wave theory, expressions obtained
in this fashion, had they worked at all, would have had to do so as a result
of pure numerical coincidence, much as it was pure coincidence according
to Fresnel that Malus’s formulas for partial reºection worked as well as
they did. Speciªcally, operating in Biot’s fashion with homogeneous light
presumes that this light is divided into two parts, one unaffected in polar-
ization, and the other rotated through a certain angle. Fresnel’s system de-
nies this very possibility altogether, and hence it rejects as invalid the
foundation of Biot’s computation. There are accordingly no physical cir-
cumstances in which values assigned to U and A can serve to quantify,
even approximately, the summations over wavelengths in Fresnel’s formu-
las. The relationship between U and A and the two summations is thus
not at all like the relationship between volume, density, and mole density in
the different versions of the gas law. No measurement process for assign-
ing values to Biot’s quantities can be physically interpreted or recast as
yielding a measure of Fresnel’s summations.

To summarize, then, the only evidence for Biot’s formulas that could
have carried over to Fresnel’s would involve experimental circumstances in
which there was no basis for taking the values assigned to U and A to be
measures of the numbers of rays in two differently-polarized subsets, only
one of which (A) has been affected by the birefringence of the crystal
lamina. This, however, would be evidence only for the general form of
Biot’s formulas, and not for the claim about the polarizations of the light
incorporated in them. No evidence for this latter claim could have carried
over to Fresnel’s formulas because wave theory explicitly contradicted
Biot’s claim concerning the polarizations of his light within lamina. In
Kuhn’s terms, no translation could be carried out between the two lexi-
cons.
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3.3 Contrasting Taxonomies
The inability to translate between the lexicons used by Biot and Fresnel in
characterizing chromatic reºection is not the only symptom that Kuhn
could have invoked to argue that ray and wave optics were incommensura-
ble. The differences between the two run deep, for they concern the char-
acter of their fundamental objects in relation to space, time, and individu-
ation. Fresnel’s wave fronts are not composed of the same material stuff as
they move along, but are instead speciªed entirely by their location as
curved surfaces in space and by the wavelengths, phases, and amplitudes
of the oscillation at this surface. Fresnel was able to develop a mathemati-
cal system for working with these quantities that enabled him to deter-
mine the resultant amplitude (and hence intensity) when two (coherent)
fronts with the same wave length meet. And, as we have seen in the last
two sections, he could then extend that mathematical system to other phe-
nomena.

Selectionist rays are quite different from wave fronts. To begin with,
they retain their physical identity over time. They are, moreover, not
curved surfaces, but lines in space. These lines have some sort of asymme-
try about them as axes, and they can otherwise differ from one another
with respect to their color-making property. Intensity does not pertain to
individual rays, as it does to the amplitude at a point of a front in wave
optics, but rather to the number of rays in a beam. So, for example, a ray’s
intensity-making power is ªxed, constituting as it were the unit for inten-
sity-counts over sets of rays, whereas the amplitude at a point on a front
can have any magnitude.

These differences between rays and wave fronts have speciªc instrumen-
tal consequences. Selectionist polarization is completely determinable by
means of a polarimeter, which is taken to detect beam asymmetries, for
there is nothing else to measure. Wave polarization, on the other hand,
cannot be determined solely by a polarimeter, which detects only a wave’s
amplitude in a given direction, but requires in addition a device that can
detect the wave’s corresponding phase. Direction-sensitive intensity detec-
tors accordingly exhaust the instrumental requirements of ray optics, but
not of wave optics, which requires phase detectors as well. These contrast-
ing views of instruments cannot help but recur in the physical interpreta-
tion of what is being measured and how imperfections in that process of
measurement can introduce artifacts and limitations in accuracy of mea-
surement. These differences are sure to surface when some value for a pa-
rameter measured by means of one phenomenon is carried over into rea-
soning about other phenomena. As elsewhere in physics, the theory of
measurement cannot remain neutral with respect to competing theories of
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a domain as the theories are extended to cover a wide range of phenomena
within that domain.

Experiment indicated to ray scientists that their selectionist (or S) light
could be sorted by a polarimeter into three distinct kinds: the polarized,
the partly polarized, and the unpolarized. Wave (or W) light could also be
sorted by a polarimeter into three kinds: the linearly polarized, the ellipti-
cally or partly polarized, and the circularly or unpolarized. These kinds
were distinguished among one another conceptually, with a corresponding
instrumental realization. Linearly polarized S-beams had the asymmetries
of their component rays entirely (or nearly) aligned in a single direction;
in partially-polarized S-beams the ray asymmetries divided into subsets
with different alignments; and unpolarized S-beams had completely ran-
dom asymmetries. In the polarimeter, these kinds of beams behaved dif-
ferently: linear beams could be completely annulled at a particular orien-
tation of the plane of reºection; partial beams had mutually orthogonal
maxima and minima; and unpolarized beams exhibited no intensity asym-
metries on reºection. Ray theory and practice required nothing more to
characterize a beam’s state of polarization.

The situation was considerably different on the wave account. Wave (or
W) light could also be sorted by a polarimeter into three kinds: the lin-
early polarized, the elliptically or partly polarized, and the circularly or
unpolarized. And each of these kinds behaved in the polarimeter just like
ray theory’s respective linear, partial, and unpolarized light. But wave op-
tics in fact bracketed both elliptical and circular with fully polarized light.
Elliptical and circular light accordingly have a close mutual relationship
as sub-kinds of polarized. To detect these differences among kinds of po-
larized light, and to tell the difference between elliptical and partial, and
between circular and unpolarized, requires a device that, in wave parlance,
alters the phase difference between mutually-orthogonal projections of the
wave vector: if the light has a phase (that is, if it is polarized), and the
phase difference is zero, then the polarization is linear regardless of the ra-
tio between the component amplitudes (which determines the angle of
polarization); if the phase difference is non-zero and the amplitudes are
different in magnitude, then the polarization is elliptical (with the angle
of the ellipse’s major or minor axis with respect to the plane of reºection
determined by both the phase and the amplitude ratio); and if the phase
difference is non-zero and the amplitudes are equal, then it is circular.
Reºection of polarized light within a glass prism—or Fresnel rhomb—
can effect the phase change, which would then be detected by a polari-
meter when the light emerges from the prism: if, for example, light that
tested as partial or unpolarized (in ray terms) by the polarimeter before en-
tering the rhomb then tested as linear on exit, this meant that the enter-
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ing light had been (respectively) elliptically or circularly polarized.13

Reºection processes proved not to be the only ones that could effect phase
changes, and so it is best to refer generically to instruments that can detect
the sorts of differences that ray theory has no knowledge of as phase detec-
tors.

Ray theory’s light, in contrast, does not distinguish between elliptical
and partly polarized, or between circular and unpolarized, and so a phase
detector has no immediate place in S optics. As Figure 2 summarizes,
W light must therefore violate Kuhn’s no-overlap principle with respect
to the polarized kinds of S light, for light that wave theory considers
to be polarized (namely, elliptic) is considered by ray theory to be partly-
polarized, and other light that wave theory considered also to be polarized
(namely circular) is considered by S to be completely unpolarized. Suppose
now that the two theories develop generalizations across their respective
kinds of polarized light. The conºicts in the domains of these general-
izations cannot help but prevent the evidence for any such generaliza-
tion within ray theory to carry over to any generalization within wave
theory.

3.4 Brewster on Elliptic-Polarization
Although Fresnel had discussed the possible existence and character of el-
liptically-polarized light, and though it had also been discussed by John
Herschel, it ironically was a convinced selectionist, Brewster, who ªrst
produced it experimentally in light reºected from metals (announced in

Perspectives on Science 489

13. It would be historically incorrect to characterize these numerical differences for
phase and amplitude (zero or non-zero for phase, equal and unequal for amplitude) as im-
plying that the types of polarization were among wave practitioners considered to be dis-
tinguished merely by the value of numerical parameters—even though in terms of mathe-
matical representation that was indeed the only difference. The reason goes to the heart of
wave optics as an experimentally-based science: each type of light had generic effects in
speciªc kinds of empirical situations, and these situations were sufªciently different among
one another that wave scientists distinguished among them as kinds. Indeed, it is likely
the case that scientiªc kind-structure in general is closely bound to a particular universe of
devices. Suppose, e.g., that the linear-elliptical-circular at some point in time becomes in-
strumentally unimportant because we are able to invent a device that can give a numerical
read-out for phase, and suppose further that effects which had been very important in the
early history of wave optics (such as Airy’s investigation of birefringence in quartz, which
involves a most complicated form of elliptical polarization) themselves become of purely
historical interest. Then the textbooks of optics would probably not divide light into the
old categories, but into new ones that better reºected the existing universe of signiªcant
apparatus and effects—though they might revert to the old terminology when discussing
the old conªguration. This does not entail that the old categories were in any sense arbi-
trary, though they are certainly relative—not to the principles and procedures of wave op-
tics, but to the relevant universe of devices at a given time.



1830, three years after Fresnel had died). Malus had long before discov-
ered that light reºected from metals shows partial polarization. Brewster
further found that linearly polarized light that is partially-polarized by a
metallic reºection could, after further metallic reºections, be transformed
back into linearly-polarized light. This was precisely analogous to the ef-
fect of internal reºection within glass rhombs on originally linear light,
and Brewster knew perfectly well, if only by analogy (since he had not
fully mastered the concepts and apparatus of wave optics), that it could be
handled in a similar fashion. This, however, exacerbated the already exist-
ing quandary posed for ray practitioners like Brewster by circular light:
namely, how could both the new light and circular be distinguished in a
way that would not violate ray categories from, respectively, the partial
and unpolarized?

Precisely because of elliptically—and circularly—polarized light’s vio-
lation of the selectionist taxonomy, Brewster was forced to neutralize the
threat by creating an entirely new distinction between normal light,
which divides as always on ray principles into the polarized, partly-polar-
ized, and unpolarized, and a parallel category that he referred to as “curi-
ous light.” This he divided into two sub-kinds, complete and partial,
with the complete sub-kind further subdivided into elliptic and circular.
These are to be distinguished among one another on the basis of a speciªc
kind of experimental process—they are indeed effectively deªned by that
process.
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Figure 2. The Incompatibility of the Wave-Theoretic Taxonomy with the
Selectionist Ray-Theoretic Taxonomy



Brewster developed an associated mathematical apparatus by using for-
mulas that he drew from Herschel’s account of Fresnel on phase in order to
predict how many reºections are necessary to effect these transformations.
The basis of Brewster’s theory lay squarely within the arena of ray optics,
but one that deployed within it formulas and parameters that derive from
wave optics and that have no conceptual seat within the ray system. His
scheme was quite complicated, and tightly bound to reºection processes.
It worked by dividing a beam into disjoint sets of rays, each such set hav-
ing its own characteristic polarization; to each of these Brewster applied
formulas that Fresnel had derived on wave principles for determining the
angle of rotation of linearly-polarized light by reºection—formulas that
had no meaning within wave optics for any putative components of such
light. Brewster then developed a creative adaptation of Fresnel’s mathe-
matics for phase that enabled him actually to calculate values for the
‘phase’, in his words, “of the two inequal portions of oppositely polarized
light, by the interference of which the elliptical polarization is produced.”
He could then produce tables that used this ‘phase’ to predict the number
of reºections necessary at a given incidence to go from linear polarization
back to linear polarization by metallic reºection.

On Brewster’s view such a re-transformation was the sole phenomenon
of interest in which “curious light” entered. The phase of Brewster’s curi-
ous light was accordingly tied directly to processes of reºection. This
meant that Brewster’s phase could not easily be generalized to cover a fam-
ily of phase devices. By contrast, Fresnel’s phase could be so generalized,
for it was not tied ex deªnitione to any particular instrumental process in
the way Brewster’s was tied to reºection.14 We remarked earlier that ray
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14. This is not to imply that Brewster’s system was empirically adequate even when
limited just to the reºection processes for which he had built it. Not at all—for there was
an inherent problem with Brewster’s creative adaptation of the Fresnel formula governing
the rotation of the plane of polarization of light on reºection. Brewster had willy-nilly ap-
plied this formula (in complete violation of wave principles, but with reasonable rationale
on ray grounds) to the major axis of elliptical light produced by several reºections in re-
spect to the azimuth of the original linear polarization. This enabled him to calculate an ef-
fective ‘index’ for the metal, which he needed in his phase expressions. However, Brewster
had actually used the presumed formula only under the degenerate circumstance that the
resultant elliptical light is maximally polarized in the plane of reºection, and here the for-
mula works well numerically in providing an empirically useful ‘index’. It should also
work in non-degenerate circumstances, on Brewster’s account, but calculations from his
own formulas show unequivocally that his scheme would fail, and fail markedly, under
non- degenerate circumstances. Had he proceeded further, or had someone picked up his
system—which no one did, because ray practitioners were few and far between by
then—then the problem would rapidly have surfaced.



optics gradually died off, not because some decisive experiments refuted
it, but largely because wave optics was proving so much more fruitful in
ongoing research. The contrast between the ease with which Fresnel’s
phase could be generalized to cover a family of phase devices and the
difªculty in correspondingly generalizing Brewster’s phase is an example
of how wave optics ended up proving so much more fruitful in ongoing
research.

Although Brewster had used Herschel’s version of Fresnel’s formulas for
elliptically polarized waves to develop his working mathematics for the
polarization phenomena produced by metallic reºection, there is no way
to derive Brewster’s mathematics from Fresnel’s formulas, either directly
or by deªning a special limited situation within wave optics in which
Fresnel’s formulas reduce to Brewster’s. The relationship between
Brewster’s mathematics and Fresnel’s is thus not like that between Biot’s
and Fresnel’s, where commonality of form complicates the question of
whether evidence for one carries over as evidence for the other. Moreover,
while phase is a crucial quantity in both Brewster’s and Fresnel’s mathe-
matics, phase for Brewster is tied strictly to metallic reºection, and even
there cannot be mapped into a special case or limited use of phase in Fres-
nel’s mathematics for elliptical polarization. Accordingly, while Brewster
could use phenomena of metallic reºection to assign values to phase, the
values in question do not coincide with or approximate the appropriate
values of phase with respect to these phenomena in wave optics.

Still, the most important use to which Brewster put his mathematics
was to derive the number of metallic reºections required to transform lin-
ear light back into linear light by a sequence of metallic reºections (any
one of which would by itself have made the original polarization appear to
be partial). And here the success of his formulas did provide evidence for
his account (provided that the reºection used to calculate the necessary
‘index’ for the reºecting metal occurs under degenerate circumstances).
Fresnel’s formulas entail precisely the same results for this number of
reºections.15 Because Brewster’s formulas are not structurally related to
Fresnel’s formulas, and phase in Brewster’s formulas does not physically
amount to a special case of phase in Fresnel’s, this evidence supporting
Brewster does not carry over to wave theory. From the point of view of
wave theory, the evidence provided by success in determining the number
of required reºections is a mere curiosity that was made possible by segre-
gating this one phenomenon from all the others in optics.
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15. To apply Fresnel’s formulas here requires the assumption that the index of refrac-
tion in metals is complex. This was ªrst accomplished by Augustin-Louis Cauchy in the
1830s. See Buchwald (1985) Appendices 8 and 9.



3.5 Geometric Optics
Selectionist ray optics emerged as an extension of geometric optics in re-
sponse to newly discovered phenomena of polarization early in the nine-
teenth century. As such, it was virtually contemporaneous with the emer-
gence of Fresnel’s wave theory, and hence little time elapsed during which
a substantial body of evidence could accumulate for selectionism inde-
pendently of developments in wave optics. This is just another way of say-
ing that there was not all that much evidence supporting the selectionist
claims within ray optics that wave optics had to deal with in one way or
another. By contrast, geometric optics had developed for centuries, with
extensive evidence deriving from phenomena of reºection and refraction.
Indeed, at the time of Fresnel the most compelling evidence that selec-
tionists could offer for their ray optics was the huge body of evidence jus-
tifying ray-based mathematics in geometric optics. In this regard the bur-
den of proof on wave optics to somehow accommodate the evidence for
geometric optics was closely akin to the burden of proof on relativistic
physics to accommodate the evidence for Newtonian mechanics and gravi-
tation.

Geometric optics constituted a natural subdivision in selectionist op-
tics because it is essentially the science of a ray’s path in reºection and re-
fraction. Geometric as a subdivision of selectionist optics is not limited in-
strumentally in any signiªcant way. It applies to reºecting and refracting
objects, however small they may be (or at least until they dissolve into
their constituent particles).

Although the ray per se is not an object in wave optics, nevertheless the
beam, considered as an orthogonal trajectory of an element of the wave
front, is. The ray of geometric optics can be retrieved as a wave optics
beam by considering a small enough element of the front that the ratio of
the wavelength to the smallest part of the reºecting or refracting device is
much less than can be measured by whatever device receives the light. As
we remarked earlier, some 150 pages of Born and Wolf’s Principles of Optics
is devoted to showing how the various long-established theoretical results
of geometric ray optics can be thus recovered within wave optics. Fresnel
himself, as well as most nineteenth century practitioners of wave optics,
spent little time on this point, because they thought that what pertained
to rays in non-wave thinking actually applied empirically to beams (since
only beams could be detected); and in wave optics beams are not collec-
tions of rays, but the spatial trajectories of delimited regions on the wave
front—that is, surface elements. In effect, wave optics does not recognize
that rays in the sense of linear trajectories have any physically meaningful
existence at all; only beams, construed as surface-element trajectories, do.
Whereas in ray optics the beam has physical meaning precisely as a collec-

Perspectives on Science 493



tion of rays. And so long as the element of the front is small enough in re-
lation to the dimensions of a device that intercepts, reºects, or refracts it,
there will be no instrumentally detectable diffraction. In this case the evi-
dence for geometric optics carries over directly into wave optics, for under
these conditions the wave optics beam obeys the same laws as the selec-
tionist optics ray with respect to path changes in reºection and refrac-
tion.16

Although the differences between classic geometric optics and its re-
construction within wave theory did not make so momentous a contribu-
tion to evidence as the differences between the ideal gas law and the virial
expansion did, they did make a contribution. According to classic geo-
metric optics, the smaller the diameter of the lens, the less the effects of
spherical aberration. This has the practical implication that one should try
to make the aperture of a microscope as small as possible, consistent with
the need for sufªcient light to yield a clear image (which in principle can
be achieved by added illumination of the object under examination). But
under the wave theory reconstruction of geometric optics, there is a mini-
mum aperture size below which detail is lost regardless of the illumina-
tion of the object because of diffraction. In the 1870s Ernst Abbe used this
fact to design improved objective lenses for microscopes (Feffer 1996).

The retrieval of geometric from wave optics is similar in one respect to
the recovery of Newton’s second-law from special relativity. The latter re-
quires choosing a limiting condition, namely that of zero velocity, for
those circumstances in which ªnite velocities have no instrumentally
signiªcant effects. Similarly, to retrieve geometric from wave optics re-
quires the limit-case assumption that the ratio of wavelength to the di-
mensions of any optically active device must be nearly zero, or rather that
the ratio must be sufªciently small in respect to the objects that act on the
light that diffraction cannot be detected. In another sense, however, the
two situations are quite different. With respect to the motion of material
objects, special relativity just alters the laws of mechanics, providing
speciªc replacements for them. It does not utterly transform the character
of the underlying objects, or at least not in ways that are particularly rele-
vant to problems of motion. Mass for example does not disappear from the
equations of special relativity, though it acquires new properties that it
did not previously have. The situation differs in optics, and perhaps the
best way to understand the difference is to consider what optics might
have been had diffraction operated in a different way.
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16. Ray practitioners, including Poisson, resisted this transformation of a fundamental
physical object, the ray, into an entity whose signiªcance depended markedly on its physi-
cal context (the beam).



Suppose that in diffraction a ray of light is deºected from its linear path
by passing near the edge of a material object. This is in fact just how
Newton did think about the phenomenon. Imagine now a beam—in the
ray optics sense—of purely homogeneous, linearly-polarized light, so that
all of the rays in it are not in any physically important way distinguishable
from one another. When passing near an edge, all of these rays would ac-
cordingly be deºected through very nearly the same angle. If we put a
screen past the edge, we will ªnd that the beam hits it at a point that does
not lie directly along its path before passing the edge: the beam has been
shifted, but it has not otherwise been affected. If diffraction operated in this
way, then we might be able to build a system in which not only are the
laws of geometric optics retrieved in a certain limit, but also there is no
signiªcant alteration required in the fundamental character of our under-
lying physical objects. We would still have rays in much the old sense,
forming beams, only now they will not follow the direct paths they used
to when sufªciently close to a material edge. This difference between ray
optics with and without diffraction is certainly much smaller than the one
between Newtonian mechanics and relativity, but it does seem closer to
that difference than the distinction between ray and wave optics. Because
in wave optics we must not just deºect an otherwise unaffected object (the
beam of light); instead, if we wish to retain a meaning for the beam in cir-
cumstances where diffraction is efªcacious, we must multiply it into a fam-
ily of beams. Wave optics instead abandons the concept of beam altogether
in such circumstances, relegating its signiªcance entirely to situations in
which it works well instrumentally.

4. Concluding Remarks
Our conclusion about the carry-over of evidence in the case of geometric
optics brings out the principal lesson the transition from ray to wave op-
tics offers on the subject of incommensurability. Without any question,
the transition from ray to wave optics early in the nineteenth century in-
volved what Kuhn would have originally called a revolutionary paradigm
shift. Wave optics requires an entirely different way of thinking about
light. Its conceptual framework could never have arisen through a se-
quence of small changes starting from the conceptual framework of ray
optics. The conceptual discontinuity across this transition, however, does
not automatically entail an across-the-board discontinuity of evidence.
The situation is much more complicated than that. In the case of classic
geometric optics, not only did the evidence carry over as evidence for wave
optics, but the evidential reasoning developed in support of geometric op-
tics carried over as well, under a new, more thoroughly spelled out inter-
pretation of what a ray amounts to empirically in geometric optics. To put
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the point differently, careful logical analysis shows that the concept of a
ray in the evidential reasoning within geometric optics can be stripped
down to requiring nothing more than that some small portion of light re-
main fully individuated and geometrically identiªable through the rele-
vant optical activity. Beyond this, the question of what a ray is was in ef-
fect left open in this reasoning. We say “in effect” here because we do not
want to deny the heuristic value of further features attributed to rays. The
point is that the full force of the evidential reasoning remains under this
reconstruction of what a ray is, and hence this reconstruction is sufªcient
to recover the evidence. What wave optics did was ªrst to add a non-
geometric principle of individuation and second to indicate the conditions
under which rays, so individuated and geometrically identiªed, remain
intact in certain optical activity. By contrast, the evidential reasoning
within early nineteenth century ray optics on polarization phenomena
is not recoverable in wave optics because rays so individuated do not re-
main intact through the relevant processes. In other words, wave optics
nulliªes this evidential reasoning in ray optics on the grounds that the
reasoning involves a premise that, even when stripped down to bare essen-
tials, not only fails to hold, but fails to hold even approximately. The
question of continuity of evidence comes down not to scale of conceptual
change, but instead to often subtle details in the logic of the evidential
reasoning.

This conclusion in no way denies Kuhn’s claim about the importance of
“the fundamental conceptual readjustment required of the historian to re-
capture the past or, conversely, of the past to develop toward the present.”
Nor does it in any way deny Kuhn’s central claims about such things as
the role of exemplars in determining scientiªc practice, the revolutionary
effects of changes in exemplars, and the extent to which such revolution-
ary changes have occurred. All that we are arguing is that the question of
commensurability of evidence across revolutionary changes in conceptual
structure is far more intricate than the picture offered in The Structure of
Scientiªc Revolutions suggests. In the long passage we quoted earlier, Kuhn
spoke of the way symbols designating such physical magnitudes as force
and mass “attach to nature.” He always emphasized the role of the law-like
relations among these physical magnitudes in determining how these
symbols attach to nature. We agree with Kuhn about this as well. All that
we are adding is that changes in the mathematical form of these law-like
relations are not by themselves enough to make the evidence before dis-
continuous or incommensurable with the evidence after a revolutionary
shift in conceptual structure. The question of the commensurability of ev-
idence before and after turns on the speciªc ways in which the law-like re-
lations in question entered into the evidential reasoning before the revolu-
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tionary shift, for it is through this evidential reasoning that the symbols
became attached to nature. But then the relationship between the nor-
mal-scientiªc traditions before and after the revolution can be extremely
complicated, with continuity of evidence in some places, discontinuity
and hence incommensurability in others, and various gradations between
full continuity and full discontinuity in still others. Claims about
incommensurability will have to be adjudicated only through a detailed
historical examination of the science before and after the revolution.
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