JED Z. BUCHWALD

AN ERROR WITHIN A MISTAKE?

AN ERROR WITHIN HELMHOLTZ’S ELECTRODYNAMICS?

In recent years much work has been done on the system of electrodynamics that
was developed by the German polymath Hermann Helmholtz in the late 1860s and
throughout the 1870s.! In 1874 Helmbholtz used this new electrodynamics briefly
to examine a situation that seems to be quite similar to one analyzed half a decade
later by his student Heinrich Hertz in a manuscript written for Helmholtz’s eyes.
Though Hertz did not refer explicitly to Helmholtz’s previous considerations of 1874,
his analysis was based unequivocally on equations that were unique to Helmholtz.
Yet in this particular application of the master’s system, its creator in 1874 and his
student in 1879 seem to have arrived at markedly different, indeed at conflicting,
results.

Here, it seems, we have a situation in which one of the two must have erred either
in calculation or else in setting out the problem’s conditions. Both were using the very
same systemn of electrodynamics, a system that was abandoned in Germany shortly
after Hertz himself discovered electric waves late in 1887. We have accordingly found
a most interesting circumstance, in which one of two practitioners apparently made
some sort of mistake within the confines of a system that became altogether defunct
about a decade later. It is as though we had come across a disagreement between, say,
two proponents of 18th century affinity chemistry concerning a process that has no
significance at all in the post-Lavoisieran world. We have stumbled across an error
within a mistake: something done wrong within a now-rejected system.

Since the details of Helmholtz’s electrodynamics have been given several times
(see note 1), we may begin our excavation of error directly with the system’s funda-
mental assumption, which is the existence of a ‘potential’ function from which the
electrodynamic interaction between paired differential volumes of (e.g.) conducting
bodies may be deduced. This function, P, can be interpreted, and used, as an energy
of the system; it depends on the electric current within each volume element, as well
as upon the distances between the elements. In its most general form P is:
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Here A4 is a universal electrodynamic constant, C and C’ are interacting currents, r
runs from the origin to C, ¥’ runs from the origin to €', and k distinguishes among
different permissible expressions for the interaction.

The function P was designed by Helmholtz to yield the by-then standard Ampére
force between current-bearing circuits when the circuits are closed. Indeed, if either
of the interacting systems to which the volume elements d*» and d°r’ respectively
belong is closed, then this most general expression for the potential reduces to
its first term. That expression (for closed, linear circuits) was first obtained by
Franz Neumann at Kdnigsberg in his successful attempt to find a single func-
tion from which both electrodynamic force and electromagnetic induction could
be obtained by, respectively, space and time differentiation.? In the system con-
sidered by Hertz in 1879, as well as in the actual experimental systems that were
examined by Helmholtz and his collaborators earlier in the 1870s, one of the
current-bearing objects always forms an effectively closed circuit, so that, with
them, we may limit our considerations here to the implications of this first term
in P.

The forces that act on the current bearing objects are calculated by varying the
function P. The volume elements may experience two kinds of effect. Each may
be acted on by a force that tends to move the element physically from one loca-
tion to another in the usual way (i.e., by producing an acceleration equal to the
force divided by the mass of the element) — contemporary language referred to
this kind of force as ponderomotive. Bach may also experience an action that tends
to change the current that exists within it — or, in common parlance, an electro-
motive force (or emf ). The important point for our purposes is this: Helmholtz’s
potential function yields the same emf as other theories of the day (and as mod-
ern electrodynamics) only when the element that is being acted on itself forms
part of a closed system; otherwise Helmholtz’s scheme entails an altogether novel
force. The second major task that Helmholtz assigned his apprentice, the tal-
ented young Heinrich Hertz, was to see whether one could polarize dielectrics
by means of electromagnetic induction. To do so Hertz thought to use this new
emf that his mentor’s system entailed; to that end he produced a feasibility study
for Helmholtz’s own eyes, a prospectus as it were of what might be done (Hertz,
1879).

Yet in this work of 1879 that Hertz drew up for Helmholtz himself, and wherein
he used his mentor’s novel electromotive force, he arrived by computation at results
that seem to conflict with ones that Helmholtz had explicitly set out in print five years
before. Hertz had surely read Helmbholtz’s paper, though he might have overlooked
the remark. But even if he had missed it, or if he had not read the paper at all, how,
using Helmholtz’s own electrodynamics, could he have reached a different result? Is
it a simple case of a mistaken calculation by a young apprentice? Or had Helmholtz
himself erred? And, if so, why did neither Helmholtz (who read Hertz’s MS) nor Hertz
apparently ever notice it? Have we just found an error within a mistaken theory? Or
is there something more to it?



AN ERROR WITHIN A MISTAKE? 187

Figure 1. Helmholtz’s spinning disk.

HERTZ AND HELMHOLTZ SEEM TO DISAGREE

The problem first appeared in 1874. In April of that year Helmholtz ended an article
entitled “Kritisches zur Elektrodynamik”, which considered objections to his formu-
lation of electrodynamics, by pointing to a specific case in which his system yielded
results that are different from those that are implied by all of the others. Helmholtz
described the situation in the following words:

Imagine a metal disk [see Figure 1] that is spinning rapidly about its axis and that is
crossed by magnetic lines of forces that are parallel to the axis and symmetrically
distributed about it, then the edge of the disk will be electrified according to the
Ampére law,? but it will not be according to the potential law. (Helmholtz, 1874,
p. 762)*

To understand what was at stake here, let’s begin with modern electrodynamics and
generalize the problem to an object that moves with a velocity v through a magnetic
field B; a point in the object is specified by the vector r that is drawn to the point from
the origin of coordinates, and the object’s center of mass is itself located by the vector
Yo (see Figure 2). The object will experience an electromotive force (emf)}F atagiven
point that is given by the cross-product there of the velocity with the magnetic field:

Fvax =vx B 1)
(The “Ampére” expression for the electromotive force)

If our object spins with angular velocity w about its center of mass then the linear
velocity v at the point in the object that is specified by the vector r will be:

V=w X (¥ —"Ten) )
(The velocity at a point of a spinning object)
Consequently, according to the Ampére expression the electromotive force at r will be:
Fyax = [w x (r —ren)] x B 3)
(The Ampere emf for a spinning object)
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Figure 2. Object vectors.

Suppose now that the angular velocity is parallel to the magnetic field. According to
this equation, the emf will not vanish.

Yet according to Helmholtz in 1874 the emf'will disappear in these circumstances.
Why? The answer is, in one sense, quite simple: Helmholtz’s expression for the emy’
contains an additional term that can in the right circumstances annul the Ampere ex-
pression. According to Helmholtz, the electromotive force that acts on an object which
moves with velocity v in the presence of what we shall call a vector potential A is:

FHELM =V X (V X A) - V(V . A) (4)
[ —— |
Ampére term Helmholtz term

(emf according to Helmholiz)

As the Appendix below shows, this auxiliary vector is defined by Helmholtz (and so
by Hertz) primitively in terms of currents (or derivatively in terms of magnetization).
For reasons that will become clear below, it’s important to note that this potential
gains significance altogether from its role as the vector that a current multiplies
in calculating the energy of the system comprised of the current in question and
the currents or magnetization with which it is interacting (vide equation (21)).° In
Helmbholtz’s energy-based electrodynamics the vector potential has no other function
or meaning than this, but, just because of its immediate presence in the energy, the
potential was more fundamental than the forces to which the energy gave rise.

The new term in Helmholtz’s expression for the force can cancel out Ampére
emfs — and, according to Helmbholtz, it does so when an object spins about an axis
that is parallel to a magnetic field which is symmetric about the axis. Despite the fact
that the young Hertz used exactly Helmholtz’s formula for this very force, he — unlike
Helmbholtz himself in 1874 — did not find that the force must vanish when the angular
velocity and the magnetic field are parallel to one another, as we shall see in detail.
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Yet in both cases essentially the same magnetic field and velocity are involved. One
of the two, it seems, must have erred in computation.

HERTZ’S SPHERE

Hertz did not consider precisely the same configuration that his mentor Helmholtz
had, but the one which he did examine provides a more general case that embraces
Helmbholtz’s, as we shall see. Hertz’s particular goal was to find a way of experimentally
testing whether or not the electromotive force that is generated by motion through a
magnoetic field can polarize dielectrics just as it can generate currents in conductors. To
do so he thought to use the force that would be generated in a small object by spinning
it in the earth’s magnetic field. To that end he had first to calculate the magnetic force
at the earth’s surface, for which he used auxiliary functions that were in reasonably
standard German employ at the time.

Hertz began with a quantity A which he used to represent the potential of the
earth’s magnetization M (i.e., its magnetic moment per unit volume). With A given by
[ (M(r")/Ix — ¥'|)d#’, the corresponding vector A that is to be used in Helmholtz’s
equation (4) has the form —V x A:0

A=-VxA

where
A= [ a6 —rpar ©)
(The vector potential A for magnetization M)
We can substitute A into Helmholtz’s basic expression for the force to obtain:®
FiaS = v X V(V-A) = V(- (V x N) (6)
(The force expressed in terms of the magnetization potential )

In equation (6) the force is labeled F4<; to emphasize that it is not as yet in a form
appropriate to Hertz’s specific application to the earth, in that A may to this point
derive from any source of magnetization whatsoever.

Let’s now follow Hertz’s application of the formula to the case of an object spinning
in the earth’s field, adding in a few details that he omitted in order to facilitate our
comparison of his results with those of Helmholtz. Take the earth’s magnetization
m to be directed along the z axis, and assume that the magnetic effects which are
responsible for the earth’s field are localized near the earth’s center, so that we can
take the distance from the earth’s center to our spinning object also to be the effective
distance between the object and the earth’s magnetization (see Figure 3). As a result,
the vector A will be:

m
Anrz = pal N

(Hertz s magnetization potential Ayrz for the earth’s field)
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Figure 3. Spinning object near earth’s surface.

Hertz did not provide the vector A for calculating the magnetic force since he had no
specific need for it given expression (6), but for future reference we note that A has
the following exact and approximate forms:

Asexactly — V x (Zez) or approximately % cos(P)e, €3
r

Here e, lies along the polar axis, R is the earth’s radius, ® is the latitude, and e, is
orthogonal to a meridian plane.

Hertz next moved almost directly to give expressions for the emyfs that result ac-
cording to equations (6) and (7) when a small object spins near the surface of the
earth. First of all, let’s assume, as he did, that our object’s angular velocity lies entirely
in the plane formed by the earth’s polar axis (to which the magnetization is assumed to
be parallel) and the line from the earth’s center to the object. That is, our object spins
only about an axis that lies in the plane of the local meridian — we will not examine the
effect of an east-west component. Since the earth’s field is axially symmetric about
the polar (say z) axis, we can in full generality consider the forces that act in any
plane section that contains the axis. For simplicity we will take the xz plane as the
one in which we calculate forces.” The object’s angular velocity accordingly has (by
assumption) no component along the y axis, but it may have components along the z
(polar) and x (equatorial) axes. Denote the latitude at our object by ®, and assume as
well that the object’s dimensions are small to first order in respect to the radius R of
the earth. In the final result we can accordingly replace » (the distance to the object
point) with R (the radius of the earth — see Figure 3).
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We can now proceed to substitute Hertz’s magnetization potential (equation (7))
into Helmholtz’s force (equation (6)), after which we replace both of the distances r
and 7, with the earth’s radins R (Figure 3). We then drop all expressions in which
the third or higher power of the earth’s radius appears in the denominator, on the
grounds that other terms remain that contain a factor of only 1/R?, as we shall see in
a moment. This last assumption completely removes the expression that corresponds
to the Ampere emf (viz. v x V(V - A)).!° Limiting our consideration to the xz plane,
we find with Hertz that the spinning body will experience the following emf:

m
Firz = =5 550z 008(®)

Fliry =0 9)
" m
Fiirz = =557 @x cOS(®)

(The emf on the spinning object according to Hertz)

These emf$ vanish altogether at the poles and are a maximum at the equator, for a
given angular velocity.

We ask next what direction the magnetic force itself has at the latitude ®. For
consistency we must use Hertz’s expression for the magnetization potential in our
computation (equation (7)). Since the corresponding magnetic force must be —V x
(V x A), we find (again under the approximation that in the end we replace both r
and ry, with R):

Biy, = %(3 sin(®) cos(®))
Biyr, =0 10
By = %(2 ~ 3cosX(®))

(The magnetic force corresponding to Hertz s magnetization potential )

We can obviously adjust the angular velocity so that it parallels the magnetic force at
a given latitude.!! In fact, we can rewrite Hertz’s expressions for the emf'in terms of
the local components of the magnetic force in the following way:

R .
Py = —sz(BﬁTz cos(®) — Biyyz sin(P))
3 éTZ =0
R z X 1
Fiiry = _EwX(BHTZ cos(®) — By sin(P))
To take a simple example, we can locate ourselves at the equator, where the mag-
netic force runs along a north—south axis (c.f. equation (10), with @ set to zero),
and where the emf reaches a maximum. We can set a sphere of radius rs, say, spin-

ning about its center around this same axis (tangent to the local meridian), in which
case the emf 'will point directly downwards (see Figure 4). In this same situation, the
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Figure 4. The emf at the equator for an object spinning parallel to the polar axis, according to
Hertz’s equations.

Ampere expression (v x B) yields an emf directed at each point along a line that
is perpendicular to the object’s axis of spin, aiming directly away from the axis and
towards the surface of the sphere. However, the Ampére emf will be incomparably
smaller than this new one that Hertz has calculated, since it will contain a factor r,
whereas the Hertz force contains a corresponding factor R.'? That is, the new force
is larger than the Ampere emf by the immense ratio R /7. Of course, the Hertz force
should not exist at all according to Helmholtz’s remarks in 1874, who had at the time
used precisely the same expression for calculating the emf that his student Hertz used
later (viz. equation (4)). Turn now to Helmholtz’s claim.

HELMHOLTZ’S DISK

Helmboltz had not specifically discussed an object of any shape whatsoever spinning
in an arbitrary direction in the earth’s magnetic field. His comment referred to a disk
that turns about its axis of symmetry in a field of magnetic force that is parallel to,
and symmetric about, the axis. Under these conditions, Helmholtz had asserted in
1874, the Ampere expression requires the existence of an emf that is directed from
the central axis towards the disk’s perimeter. But his own force law, he continued,
implies that there will be no emy at all. We will turn below to the reasoning that may
lie behind Helmholtz’s claim. Let’s first consider whether, and if so in what manner,
it applies to the situation that Hertz envisioned half a decade later.!?

One might argue that the two situations (Helmholtz’s and Hertz’s) differ from one
another because Helmholtz specified a magnetic field that is symmetric about and
parallel to a disk’s axis of spin, whereas Hertz considered the earth’s field, which
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certainly seems not to satisfy the requirement, vide equation (10). However, Hertz’s
spinning object is vastly smaller than the earth, and in its vicinity the earth’s field
should certainly be effectively uniform, thereby trivially fulfilling Helmholtz’s sym-
metry requirement. Nevertheless, Helmholtz’s conclusion implicated the symmetry
of a field of magnetic force, whereas Hertz’s calculation was based upon a specific
expression for the magnetization potential, from which the force was computed. In
order to clarify the plausible assertion that the (locally insignificant) inhomogeneity
of Hertz’s magnetic force cannot be the source of the difference between his and
Helmholtz’s claims, we will first connect Hertz’s calculation to a vector A that does
yield a strictly uniform force.

We need to find a vector whose curl will be equal to 2 homogeneous magnetic field
B.' One such is A,:

Ar=1B xr) (11)
(4 vector potential that produces a uniform magnetic field)

Inserting A, into the general Helmholtz expression for the force (Fygim, equation
(4)) we obtain (naming the result F,):

F,=3vxB+1wx(Bxr) (12)
(First expression for the emf corresponding to A,)
This new emf can be written in strict mathematical equivalence as:
Fr = 5(r — rem) X (B X w) + 1w x (B X rem) (13)
(Second expression for the emf corresponding to A,)

We next insert into equation (13) the very same expressions for the magnetic field that
result from Hertz’s magnetization (equation (10)). In addition, we also approximate the
center-of-mass distance (7., by the earth’s radius (R). Doing so yields, as expected,
precisely the same expression for the emf on the spinning object that Hertz himself
had obtained (equation (9)). In other words, the vector A, produces the very same emf
as the vector A (equation (8)) that corresponds to Hertz’s magnetization potential,
Antz (equation (7)), when the same approximations are used.

Since we now see that Hertz’s expressions for the emf follow perfectly well from
a calculation based on the assumption that the local magnetic force is uniform in
direction and magnitude, it follows that the difference between his and Helmholtz’s
assertions can have nothiag to do with any slight local inhomogeneity. If Hertz’s claim
is correct, then it seems that Helmholtz’s simply cannot be, and vice versa.

Or have we missed something essential here? To see whether or not we have,
turn first to Helmholtz’s original statement. Helmholtz had there referred explicitly to
“magnetic lines of force . . . that are parallel to the axis and symmetrically distributed
about it”. Although he used the phrase “magnetic lines of force”, Helmholtz just
might have been thinking of a field of vector potential, since his entire discussion of
the emf$ involved in motion proceeds from his fundamental interaction energy, which
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is formulated in terms of the vector potential and not (by necessity) the corresponding
magnetic force. If that were so, then Helmholtz’s conclusion would be almost obvious,
given the foundation of his electrodynamics in variational calculations based on in-
teraction energy: for if the vector potential is itself symmetric about the disk’s axis
of rotation, then the potential that will be seen by any point of the rotating sphere
or disk must always be the same — in which case the energy-variation that underpins
Helmbholtz’s calculations can yield no resultant force at all, just as he asserted.!® Under
this interpretation there is no conflict between Hertz’s and Helmholtz’s claims; we are
instead left with a sloppy statement on the part of Helmhoitz — and worse, one that
would not correspond to any reasonable experimental situation, since the originating
currents follow the vector potential in direction,'6

There is another possibility. What if Hertz’s emfs are not the only ones that are
consistent with the assumption that the field of magnetic force is uniform (or sym-
metric about the axis of spin)? This seems unlikely, since we have already found that
there is nothing at all wrong with his computation, and, moreover, that it is entirely
compatible with the local uniformity of the magnetic force. But to imply a proposition
is not necessarily to be implied by it.

Let’s return to the vector potential that corresponds to a uniform magnetic force.
We considered A,, which, we saw above, produces Hertz’s emf when we require (as
we may) that the expressions for the B field in the resultant force (equation (12)) be
the same as those that are implied by Hertz’s magnetization. But this is not the only
vector potential that can produce the requisite magnetic force. In fact, we can clearly
add any constant, or the gradient of any function, to A, and still obtain what we need
if we are concerned only with the resultant magnetic force. For example, we could if
we like replace the distance r to the point in the object at which the emf is calculated
with the distance from the object’s center of mass to that point, because the additional
term that results (namely — %(B X ¥em)) 18 itself a constant. The potential A, would
then be:

Acm = %[B X (X — Fem)] (14)

(4 magnetically-equivalent vector potential )

Note that if the magnetic field B is parallel to the angular velocity w then this vector
potential will itself parallel the linear velocity v. Note also that our new vector potential
is axially symmetric since its direction and magnitude always have the same values
with respect to the disk’s radius. This is not true for A, because the position vector r
is not perpendicular to the disk’s axis (vide note 15).

If we now insert A, into Helmholtz’s formula then we obtain, after considerable
but standard manipulation (recalling that the location of the center of mass and the
angular velocity of the spinning body are both to be considered constant):

Fom =V X (VX Am) = V(V-Acm) = 2 [V X B — w x (B X (r — Iey))]
(15)

(First expression for the emf corresponding to A.,, according to Helmholtz's formula)
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We can immediately see that this new force differs by the term —%[V x B+
w X (B X (r — rem))] from the expression (equation (3)) for the Ampere emf. Of
course, the force that derives from A, (equation (12)) also differs from the Ampére
expression. The question is whether our new force, which derives from A, differs
in an appropriate manner from the one that is implied by A,.

Indeed it does. The new expression can be manipulated to yield, in strict equiva-
lence:

ch = % [(l‘ - rcm) X (B X w)] (16)

(Second expression for the force corresponding to A, according to Helmholiz’s
SJormula)

According to this equivalent second expression, the emf will indeed vanish altogether
whenever the angular velocity parallels the magnetic field. We have therefore found
a vector potential that yields a uniform field of magnetic force and that nevertheless
produces the very effect that Helmholtz had claimed.

How can this be so? The answer is deceptively simple: although a constant addition
to the vector potential has no affect at all on the magnetic force, it certainly may have
one on the electromotive force according to Helmholtz’s electrodynamics, because
Helmholtz’s general expression for emf contains the additional term (in comparison to
Ampére) —V (v - A). Even if the addition (call it A’) to the vector potential is constant,
this extra term in the force will yield two novel contributions: namely, —(A’ - V)v and
—A’ x (V x v). Neither of these necessarily vanishes, because v may depend upon
r (vide equation (2)). As a result, Fp,, but not F,, does indeed disappear when the
angular velocity is parallel to the magnetic force. It’s instructive to rewrite the force
that arises from the Hertz potential (A,) in the following manner, since we can then
easily see how it differs from the one that arises from Acy:

The Hertz force
Fr =5 [(r = Yem) x (B x w)] + § [w x (B X Tom)] a7)
Fom, the Helmholtz force from A, addition from A,

(Comparison of the Hertz and Helmholtz forces)

Here we see clearly that the Hertz force can yield a result even when the Helmholtz
emf vanishes altogether. Unlike field theory, Helmholtz’s system is manifestly not
gauge-invariant, and in this case of the spinning disk or sphere we have found a
situation in which the lack of invariance has a testable consequence.

We can naturally ask whether Helmholtz might have envisioned such an expression
as Ayy. If we recognize that he, unlike Hertz (who started from the earth’s magne-
tization), began with a field of magnetic force and a spinning object, then it seems
plausible that Helmholtz would have thought of this expression for the vector po-
tential, had he produced any at all, and not the one that Hertz’s lengthy computation
entailed. Unlike Hertz, who naturally reckoned from the earth’s center, Helmholtz
(thinking of a locally-produced magnetic field} would no doubt have worked in terms



196 JED Z. BUCHWALD

of local cylindrical coordinates, placing the origin at the center of his spinning disk.
The potential Ay, unlike A, contains the vector r — ¥y, or p, which represents the
distance from the center of mass of the spinning object to the point on it at which we
wish to calculate the emf. This same distance appears in the velocity v (equation (2))
of such a point. Accordingly, if Helmholtz had wondered at all about an appropriate
vector potential to correspond to his magnetic field, then he would likely have used
the very same vector that appears in the velocity, thereby ensuring the absence of
emyf. We will turn in & moment to the possible course of Helmholtz’s reasoning during
the year following the publication of his remark concerning the emf in a spinning
disk, but let’s first consider the difference between Hertz’s and Helmholtz’s attitudes
in respect to this sort of problem.

Hertz was in an altogether different frame of mind from Helmholtz when he consid-
ered the spinning sphere. Helmholtz in 1874 was looking for a situation that contrasted
strikingly with the claims of the Ampére emf. Hertz was looking for a way to test
whether electromagnetic induction can polarize dielectrics. Where Helmholiz was
looking to provide evidence for a new force law, Hertz was looking to use this same
force law as a tool in order to see whether a particular kind of novel effect that would
otherwise be difficult to produce could actually be elicited. Hertz therefore began di-
rectly with the specific physical situation that he had in mind, and he then proceeded in
a straightforward way to calculate the force from it. He started with what he took to be
the most fundamental assumption possible, namely that the earth’s field results from a
magnetic dipole located near its center. Hertz had to work with the dipole’s potential,
and not the force to which it gives rise, because Helmholtz’s law was expressed in
terms of potentials.

Do we have any evidence concerning Helmholtz’s own thoughts in respect to the
requirements of his new force law, based as it was on the vector potential and not
on magnetic force? To answer that question, let’s first return to Helmholtz’s original
statement of 1874. There Helmholtz specified a magnetic field that is symmetric
about the disk’s axis of rotation; he said nothing about the vector potential per se,
or even about the sources of the field. We saw above that we can produce a trivially
symmetric magnoetic field — i.e., a constant one — using either of the following two
vector potentials (with B constant of course):

A =1Bxr) or Ag = 3[B X (r—¥em)]

Neither of these two potentials corresponds to a physically-realizable distribution
of (closed) currents, simply because the curl of their curl — which represents
current — vanishes.!” Nevertheless, the difference between these two expressions con-
tains a hint that may be historically significant.

We have seen that A, yields a force on a spinning disk or sphere when the magnetic
field parallels the rotation, whereas Ay, does not. If the field is parallel to the angular
velocity, then we can rewrite A, as %[(%)w X (¥ — ¥em)]- The expression w x (r —
¥cm) 1 just the linear velocity v at the circumference of our rotating sphere or disk.
Here, then, the vector potential circulates symmetrically about the disk’s axis, while
the corresponding magnetic field parallels the axis.'®
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Consider any given radius of the rotating disk. No matter what the position of
the radius may be at any given moment, it always sees precisely the same value
Acm because it has always the same velocity v. And here we perhaps spy a clue
to Helmholiz’s reasoning during the year after his remark was printed. Suppose we
assume that the vector potential is produced by currents that are concentric to, and
symmetric about, the disk’s axis. In such a case as well, the rotating radius will always
see the same potential. It is not a difficult leap from the symmetry of an A, that
produces a constant magnetic field to the potential (call it Agymeur) that is produced
by axially-symmetric currents proper. Neither A, nor Agymeurr Will produce any emf
in the rotating disk or sphere, and for precisely the same reason.

We may now fruitfully examine the consequences of the fact that the emf will
vanish only when the vector potential is axially symmetric. Specifically, suppose that
A has the general, axially-symmetric form 4(p)e, where A(p) depends solely on the
distance from the central axis. Here the cylindrical-coordinate p specifies the distance
to a given point from the z axis, while ¢ specifies the angle of p in a plane orthogonal
to z. Then the magnetic field B becomes [(% + ph')/ple., and Fenr vanishes.!® This
magnetic field is itself axially symmetric (although orthogonal to its vector potential),
so we have now found a situation that corresponds directly to Helmholtz’s requirement
and claim in 1874. The point that Helmholtz seems to have missed is this: namely,
that A fields which are not themselves axially-symmetric can nevertheless generate
B fields that are, with non-zero em/$ resulting thereby. One such A field, for exam-
ple, is h(p)e, + pe,. The corresponding magnetic field is then [(h + ph")/p — 1]e.,
which is itself axially-symmetric, but the emf no longer vanishes, becoming in
fact —we,.

Hertz’s magnetization potential for the earth is just another example, albeit one
in which the magnetic field is symmetric about the spin axis by virtue of its near
uniformity in the neighborhood. This is most simply understood by considering the
potential’s approximate form, in which we replace the vectors to the object point and
to the object’s center of mass with the earth’s radius. For then we can at once see that
the approximate potential (see equation (8)) has the form B x r (see equation (10)),
and this, as we have seen, does not abolish the Helmholtz emf.

DISAGREEMENT AVOIDED, WITH REMARKS ON MISTAKES,
NOVELTY AND PRACTICAL WORK

We began our discussion by pointing to a conflict between Helmholtz and his student
Hertz concerning the emf that is generated in a spinning object subject to a magnetic
field. It’s certainly possible that the difference remained unresolved, and that it was
perhaps never even recognized at all by either of them. But Helmholtz did not cease
working on electrodynamics after the paper containing his claim about the spinning
disk was printed. Not at all — he continued to write articles on the subject, and a
good deal of related experimental work occurred in his Berlin laboratory. Is there any
evidence in this subsequent activity that Helmholtz ever recognized, if only implicitly,
that his remarks concerning the spinning disk were problematic?
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Figure 5. Helmholtz’s test for emf.

Indeed there is. The very next year Helmholtz made the following remark in a
paper concerning experiments done on induction produced by motion in open circuits.
Helmbholtz wrote:

Let the endpoint a of the conductor (ab Fig. 1 [Figure 5 here]) be fixed, b however
being able to rotate in a circle about a, further let the acting magnets and current
elements be so arranged that the first of these constitute rotationally-symmetric
bodies, whose magnetic axes, as well as whose axes of rotational symmetry,
coincide with the normal erected at the midpoint of the circle, while the circuits
build concentric circles about this axis. With such an arrangement, the relative
position of the radius aB with respect to the magnets or the currents is precisely
the same as {that of} ab; the electrodynamic potential has the same value in both
cases, namely zero, and the potential law would as a result have the consequence
that in this case no electromotive force will act along it during the course of the
rotation of the radius ab into position aB. (Helmholtz, 1875, p. 782)

Here we see that Helmholtz has now recognized the conditions that must be satisfied
in order to guarantee the absence of emf. The currents that act upon the moving radius
all lie in concentric circles having as axis the line about which the arm ab in the figure
rotates. Further, any magnetic bodies have their axes of magnetization and rotational
symmetry along this same axis, and so here too the rotating radius can never see any
change in the vector potential.* Not only are all magnetic fields axially-symmetric,
s0 too are the corresponding vector potentials.

Clearly, during the time between his remark the year before and this one Helmholtz
had understood the need to specify conditions on the symmetry of the vector potential
rather than the magnetic field. He was undoubtedly pressed to do so by the demands
of an experiment to test the emf produced by motion, for that required producing an
appropriate physical configuration of currents and magnets. The situation described
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here is what Helmholtz had had in mind the previous year, but with a notable differ-
ence: the magnetic field in this new situation is not necessarily parallel to the arm’s
axis of rotation. It is however always axially-symmetric, as are any currents. For the
latter reason alone there can be no resultant emy.

And so we have solved our apparent conundrum. There is in the end no persistent
disagreement between Helmholtz and his student Hertz, because Helmholtz in 1875
altered his inadequate remark of 1874. Hertz’s quick and easy use of Helmholtz’s
equation for emfneeds no explanation at all, at least insofar as a putative conflict with
Helmholtz is concerned. Unlike Helmholtz himself, who had deduced the expression,
Hertz had learned it. For him applying the formula to an object spinning in the
earth’s field was just an exercise in using what he had learned from Helmholtz at a
comparatively early stage in his career. For Helmholtz, on the other hand, the new
expression for emf had come as the result of considerable work trying to build a
general foundation for electrodynamics. He had not learned it as a student, and for
Helmholtz, its creator, the new formula undoubtedly did not have the character of
intuitive directness that, for some time in the early 1880s, it had for the young Hertz.

Four different moments in the production of a novel physical system are nicely
illustrated here. Within five years of the system’s initial production by Helmholtz
we find him applying it incorrectly on paper. Helmholtz had indeed erred within the
confines of his own new system. But not for long: the very next year, faced with
the concrete demands of a real experimental structure, Helmholtz corrected his error.
Then, four years later, the neophyte Hertz, who had learned the new system without
having been thoroughly immersed in alternatives to it, applied the scheme almost
mechanically, without questioning the elements in it that experiments had begun to
make problematic even to its originator.

Novelty, error, error rectified, and finally rote application — these are issues that
raise questions for understanding how systems that live both on paper and in the world
of material devices evolve. Initially, the specific novelties of Helmholtz’s system had
little relevance for the contemporary electrodynamics laboratory; there simply weren’t
any devices that worked with the new forces that Helmholtz had created on paper.
Neither were any experimental oddities clarified thereby. More to the point, the world
of electrodynamic devices and objects had long been designed and understood on the
basis of symmetries that were scarcely compatible with the new systemi.

Symmetries often constitute critical elements in apparatus design, usually for in-
tensely practical reasons. In lens design, for example, it had always been important to
avoid astigmatism, which meant that the lens had to have the same form in any plane
section through its center and including its lenticular axis. Moreover, the very manner
in which lenses were ground meant that any asymmetries that did occur had to be the
result of undesirable and hard to control factors. Lenticular symmetry accordingly
represented both abstract desiderata (the avoidance of astigmatism) and practical ne-
cessity (lens grinding methods). The motors and induction coils of electrodynamic
devices — the existing world that Helmholtz’s system had to accommodate ~ had sim-
ilar design and practical symmetries built in. Apparatus builders and paper analysts
had long concentrated on the magnetic forces that push motors around and that induce
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electric currents. [t wasn’t practical to make, or to calculate, complicated force pat-
terns, and so devices were constructed with extremely simple symmetries. Usually
the goal was to keep the magnetic field as uniform as possible within the motor or
the induction coil, and to avoid complexity in the winding of coils or armatures.
Symmetry of calculation connected to symmetry of design.

Uniform magnetic forces, or forces that are nicely and simply distributed about
well-chosen axes, were all that were needed to build working apparatus until
Helmholtz’s intervention in 1870. Intuitions had been developed over decades for
designing and building apparatus that had the right kinds of symmetries to produce
the desired actions. Helmholtz himself undoubtedly possessed just this kind of intu-
itive sense, and it was precisely this that led him into error in 1874, because his new
system broke apart the prevailing concordance of symmetries.

It’s not generally wise to attribute ‘error’ to work done long ago, because it is
entirely too easy to ignore contemporary factors that make reasonable what was done
or said at the time, or to import into past work irrelevant present views. But error per
se certainly can and does exist. [t can be recognized at the time, and, even if itisn’t, the
historian who has mastered the tools and techniques of the era has license to point out
mistaken calculations or claims that shed revealing light on what took place. It is not
easy to specify a precise set of rules that might govern the act of error-excavation (and
in itself error is not perhaps intrinsically interesting), but at least this much should
hold true: the error-excavator must be reasonably certain that the error-maker could
have been persuaded to acknowledge and to correct his mistakes had they ever been
pointed out.

In Helmholtz’s case there is no doubt that he would have acknowledged error,
because he in fact did so (albeit implicitly) the very next year by altering his speci-
fication for a symmetry that would abolish the electromotive forces. During the year
between 1874 and 1875 Helmbholtz recognized that intuitions based on force sym-
metries did not work for his scheme. Symmetries had rather to apply to the vector
potential than to the magnetic force that arises by taking its curl, which meant that
apparatus had to be designed by arranging the wires themselves according to the
desired patterns. Intuitions about symmetric forces had to be replaced by intuitions
about symmetrically-placed wires.

This is particularly significant when we recognize that Helmholtz’s system worked
entirely and directly with entities that formed the tangible electrodynamic workplace.
His scheme did not base itself upon electric particles, as did his rival Wilhelm Weber’s
(and many others in Germany at the time), nor did it work at a fundamental level with
force ficlds, as the British did. It spoke instead of wires that carried currents, or of
electrically-polarized dielectrics, or of magnetic bodies. These were its primordial
elements, at least in the 1870s, and despite the certain fact that Helmholtz did think
that something more fundamental might lie hidden beneath the tangible world, he
did not for the most part build his theories at a deep level on conjectures about the
invisible realm.

Although our subject has not been a large one since it does not involve many
people over a long period of time, it does have broader implications than might seem
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to be the case because its-argument runs counter to contemporary historical trends
that resolutely deny the existence of anything beyond the purely local — of beliefs and
behaviors that transcend immediate circumstances and that may hold across national,
cultural, and economic boundaries. Much history of science today sees all events as
irremediably local, as having no counterparts among other people, at other times, and
in different places. Innumerable articles have been written in recent times with the
adjective ‘local’ prominently displayed for admiration in title or body to show that the
author does not adhere to the disreputable notions of unity or generality. Heterogeneity
in society is, no doubt, morally and socially salutary. The last century provides too
many examples of what happens when passions for homogeneity govern life and
desire. But, to state what should be trivially obvious, attempts to achieve internal
consistency and general applicability in technical systems do not necessarily have
much in common with attempts to impose social uniformity by tyrants or fanatics.

The events that we have examined are certainly ‘local’ in the sense that they
took place in particular places, at specific times, and among certain people. And
they are local even in their express content, since the peculiarities of Helmholtz’s
electrodynamics were pursued mostly in Berlin. But in a broader sense much is
entirely general here. Helmholtz erred in thinking that it was sufficient to specify a
symmetry for the magnetic force, and he later knew as much. Hertz correctly and even
mechanically carried out an internally-consistent computation based on Helmholtz’s
system. It is entirely reasonable to assert that Hertz in 1879, but not Helmholtz in
1874, worked correctly and without error. Locality in our case pertains rather to the
specifics of Helmholtz’s system, which were certainly not shared by many of his
German or British contemporaries, than to the pragmatics of calculation or even of
instrumentation. It would have been quite possible for the Maxwellian J.J. Thomson,
€.g., touncover Helmholtz’s 1874 error, to follow Hertz’s 1879 calculation, and to see
exactly how Helmholtz’s system had correctly to be applied.

Moreover, Helmholtz fully intended that his electrodynamics should be uniquely
correct—that all others would have to fall in some way or other under its sway or else be
abandoned altogether. In this he was no different from any of his contemporaries, who
however held different views as to the best system to adapt, or for that matter from any
mathematically or experimentally oriented investigator since antiquity. Views can be
nuanced, and often have been, concerning such things as whether a particular scheme
is physically as well as mathematically significant, or even whether mathematics can
be used at all. But I do not know of anyone who has ever maintained that two systems
or computations, each of which claims to treat essentially the same physical domain in
similar ways, and which have conflicting empirical consequences, can both be correct.

APPENDIX: HELMHOLTZ’S POTENTIAL
AND CORRESPONDING FORCES

The close links between Helmholtz’s electrodynamics and energy considerations have
been discussed several times by historians, as have his deductions of the corresponding
electromagnetic forces.”! Nevertheless, it is worthwhile reproducing as closely as
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possible Helmboltz’s own analyses in order to capture the full flavor of his theory in
the manner that he intended. We will rely on previous historical work, including my
own, but will diverge from it in presentation and detail in order to adhere closely to
Helmholtz.

Helmholtz’s own theory of electrodynamics was presented in a series of 11 pa-
pers published from 1870 through 1881. Two among these developed the system in
elaborate detail, specifically 1870b and 1874. The 1870 paper developed the conse-
quences of Helmholtz’s generalized electrodynamic potential, in particular (as its title
suggests) for currents in conductors at rest, but also (and importantly) for dielectrics.
Here Helmholtz was not concerned with either the mechanical force that acts to move
current-bearing bodies, or the electromotive force engendered by changes in the con-
figuration of systems in which they exist. In response to a series of intense criticisms
by, among others, Wilhelm Weber, Eduard Riecke and Carl Neumann in Germany,
and Joseph Bertrand in France, Helmholtz carefully worked out the forces implied by
his theory.

Although part of Helmholtz’s purpose was to consider the most general possible
form for a potential function that would be compatible with the generally accepted
laws that govern closed circuits, we will here limit our considerations to that part of
the potential which is given by a generalization of the expression developed by Franz
Neumann. This expression was originally developed solely for linear, closed circuits.
One of Helmholtz’s major assumptions was that the elements in the Neumann integral
could be considered independently, thereby extending the expression to open circuits.
In addition, Helmholtz examined three-dimensional currents, to which we will here
limit our own considerations.??

We begin with the electrodynamic ‘potential’ that two three-dimensional current
distributions establish when one at least of them forms a closed system:”*

/
P———-——'- C-C BB (18)

rdr II‘ - l"
In this expression for P, the integrations both occur over all space, which counts each
pair of volume elements d°»'d*r twice. If, as Helmholtz remarks (Helmholtz, 1874,
p. 732) the currents occur in physically separated conductors, and the integrations each
occur over only one set, then the factor of % may be dropped. In addition, the currents
C, C' are fluxes: that is, they represent the quantity of charge per unit time per unit
area that flows in a given direction. Helmholtz’s generalization to three-dimensions of
the procedure established originally by Franz Neumann then yields forces according

to the following rules.

The ponderomotive force — the force that moves a body physically — is (following
Helmholtz’s sign convention) to be found from the negative gradient of this func-
tion, with the operator affecting only the locus of the body on which the force acts.
Helmbholtz accordingly set the negative variation of the potential function equal to the
product of the force sought by the variation in position of the object. If the loci of
points in the body carrying current C are specified by vectors r, then the force Fp s
that would act on an element d° as a result of its change in position from r to r + ér
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must accordingly satisfy variational equation (19):
/ Fome - 1) +6,P =0 (19)

The subscript ‘7’ in §; indicates that the displacement of the object is completely
arbitrary. Note that Fyme depends only upon the configuration of the system and the
magnitudes of the currents.

Other forces, called electromotive (or emf), may also exist that act to change the
magnitudes of the currents themselves. With Helmholtz we consider the emyf that
would act on a unit current in a given direction. Such a force is given by the positive
rate of change with time of the potential, with the proviso that the emf must not
depend upon the amount of charge per unit time (that is, the linear current) which
flows through the object being acted upon. In the case of three-dimensional currents,
we construct an appropriate variational equation purely formally by taking the scalar
product of the emf with whatever current flux C exists at its locus, and then setting the
result equal to the time-rate of change of the potential function. We will subsequently
impose the condition that the resulting emf must be independent of linear current.
This gives equation (20):24

I

(ijemf. Cd3r> 8t —6,P =0 (20)

The subscript ‘¢’ in §, indicates that the change in the potential is calculated over an
arbitrary increment of time. As we will see, the variation in the position of the object
during this time interval is not arbitrary: it is determined by the object’s velocity, and
the corresponding variation represents the change as seen by the moving object.

To facilitate computation Helmholtz in 1870 had introduced a vector U, which
allowed him to express the potential in 2 manner that provided in the end a compact
representation of the forces:%

1 (o 2
tU(r):/ ﬂ)—d3r/—>P:—A—/C.IJd3r 21)
¥ |r - l'/l 2 r
The constant 4 in (18) and (21) is fundamental in Helmholtz’s electrodynamics, but
our discussion here does not depend upon it, and so it has been suppressed below for
notational simplicity. Note that in this form the energy P depends directly on the prop-
erties of what we shall now call the vector potential U. Since everything in Helmholtz’s
electrodynamics follows from the basic energy expressions, intuitions about how to
set up exemplary problems must be developed about current and potential, and not
about the resulting forces, since the forces are derivative, not fundamental, quantities.

Helmholtz worked as follows.?® Begin with the general expression for dP, which
contains both C and C'. Consider an infinitesimal portion of current-bearing material,
the volume d’r of the element being (do')(dr). Choose dr such that it is parallel to the
current flux C in our element. We may then write the product C d°# in the equivalent
form (C do) dr. As a result, the contribution dP that this element will make to the
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entire potential will be:%’
dP = —(Cdo)dr-U 22)

Since the variation is done without any consideration of the linear current C(do’), we
can now set this product to one and ignore it altogether.

Return to equation (20), and consider the contribution to the entire variation 5, P
that comes from the circuit element C d*», which must now be set to dr in the variation
for the emf as well:

8,(dP) = (61)Fepys - dr (23)
From equation (22) we can calculate the variation of the element dP in terms of U:
8;(dP) = —4,(U - dr) 24
Consequently we have:
(8)F e - dr = —6,(U - dr) (25)

Helmbholtz had now to compute the change that arises when the affected object
moves in relation to the external currents, and when the external currents are them-
selves allowed to change in situ, with the virtual displacement of the object occurring
as a result solely of its motion with a velocity v during an infinitesimal time. A mod-
ern procedure can be used greatly to simplify the computation, but it is historically
instructive explicitly to follow Helmholtz’s own route.?

Let’s consider separately the two parts into which the variation divides. The first
part represents the change in U that is seen by a point fixed in the element when
the element moves from a place where U has one value to a place where its value is
different, together with the temporal change in U. The second part of the variation
represents the change in the value of U - dr that occurs as a result of the alteration
in the element’s length. Hereafter italic boldface (U) represents a vector as seen by a
point that is fixed in the element:

8:(U - dr) = (8,U) - dr + U - §,(dr) (26)
e N e’
1 2

Here 6,(dr) is the change in the length of the element that occurs as a result of its
motion. Since §; and d commute,?’ we may replace §,(dr) with d(5;r). And since
the differential operator d is itself (dr) - V, the second part of the variation may be
written:
U-§(dr) = U - [{dr - V)ér]
[ —
2
Furthermore, 8,1 itself is just the virtual change in ¥ produced by motion with velocity
v during the time interval 3¢, i.e., v8¢:
U-8(dr) =U- [(dr - V)v] ¢ 27
[T —
2
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As for the first part of the variation in (26), we want to express our result in terms of
the value of U at a fixed point in space — not at a fixed point of the displaced element.
However, the U that appears in (26) refers to a specific point in the moved element.
;U must therefore be calculated using the material derivative (following the point)
in order to express our results in terms of U at a fixed spatial point:

8U = [(%—? + {(v- V)U})Et] (28)

Combining equations (25) through (28) yields (after dropping the common scalar
factor 87):

Feme - dr = — [(% +{(v- V)U})] dr— U - [(dr- V)v] (29)

After manipulation, the right-hand side of equation (29) can be put in a form that
contains the scalar product of a vector with dr. Equating that vector to Fepy yields
Helmholtz’s expression for the electromotive force:

ou
Femfz—gt— +Vv X (VxU)—-V(y-U) 3o

California Institute of Technology, USA

NOTES

! Buchwald (1985, 1993a, 1993b, 1994), Darrigol (1993a, 1993b, 2000), Kaiser (1993).

2 Archibald (1989), and Olesko (1991, chap. 5). See also Darrigol (2000).

? This is the electromotive force due to motion that follows from an electrodynamics that also
yields Ampére’s original bodily force between circuit-elements carrying electric currents. In
what follows we will for the sake of brevity refer to this as the “Ampere” emf, although Ampére
himself certainly never obtained any such thing since he did not of course discover electro-
magnetic induction (though he probably did observe it: see, e. 8., Hofmann, 1995, chap. 8).

4 The original reads: “Denken wir uns eine drehende Metalscheibe, schnell um ihre Axe
rotirend, und von magnetischen Kraftlinien durchzogen, die der Axe parallel, und rings um
die Axe symmetrisch vertheilt sind, so wird der Rand der Scheibe nach dem Ampére’schen
Gesetze elektrisch werden, nach dem Potentialgesetze nicht”

5 Inthe case of currents A(r) hasthe form [ (C(x')/ |r — r'|) &*#'; in the case of a magnetization
M the vector A becomes —V x [ (M(r')/ [r — v'|) &*#'. See below, note 7.

® The vector X functions in a way that is analogous to that of the scalar potential for electric
charge since V2X = —47 M . By the time that Hertz arrived in Berlin, methods for calculating
the force exerted by magnetic distributions were well known, although specific details might
differ from author to author. The route from Helmholtz’s definition of the auxiliary vector A in
terms of currents (see equation (21) in the Appendix, where the vector U stands for A) to the
specification of A for magnetization was also well known, though again details would differ
from author to author. Helmholtz in any case provided the details that Hertz would have needed
in this respect, if he did not already know them, in Helmholtz (1870, pp. 617-119).

" Expression (5) for the vector potential due to magnetization is nowadays rather unfamiliar.
Using the Coulomb gauge we today write (ignoring a sign difference due to Helmholtz’s
convention) [ ((V,r x M)}/ |r — r'|) d3#’. The two forms are however equivalent: they differ
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by aterm [ (V,r x (M()/ Ir —r'])) d3r’, and this vanishes on integration over all space if the
magnetization is localized. See Jackson (1975), sec. 5.8.

8 Hertz actually worked from Helmholtz’s expression for the force (equation (4)) modified
by the introduction of an auxiliary scalar function x equal to —V - A, which facilitated the
comparison of Helmholtz’s expression for the emf with one that had been derived in 1864 on
the basis of Weber’s electrodynamics by Emil Jochmann (Jochmann, 1864). Assuming that
V23, vanishes — which sirply means that the force calculation holds for points that are located
outside the magnetization proper - then Hertz could replace V x (V x 1) with —Vx in the
expression —v x (V x (V x 1)) for the Ampére term.

? Precisely because Hertz computed the force assuming a magnetic dipole located at the earth’s
center his coordinate system had its origin there as well. We will see in what follows that the
choice of coordinate systems is closely connected to the apparent difference between Hertz
and Helmbholtz.

10 1t removes as well an extremely small term that is linear in the distance from the object’s
center of mass to the point in it at which the emf'is to be computed.

11 The angular velocity will parallel the magnetic force if its equatorial and polar components
are in the ratio 3 sin(®) cos(®)/(2 — 3 cos*(P)).

12 For this particular example, the Ampére emf would be rw_ B,, whereas the Hertz emf’ would
be —(R/2)w. B..

13 Helmholtz’s spinning disk corresponds to a slice of Hertz’s sphere taken orthogonally to the
sphere’s axis of rotation. Whatever consequences correctly hold for Helmhoitz’s disk will ipso
factohold as well for Hertz’s sphere by treating the sphere as the limit of aseries of stacked disks.
14 Note again that a field uniform in direction and magnitude is trivially symmetric about its
direction and so is clearly a special case of Helmholtz’s requirement.

!5 We can casily understand this by remarking that A, (equation (11)) implicates the distance
¥, which implies that the potential seen by a point on the rotating arm must depend upon its
angular position since r does not remain the same during the rotation.

16 15y such a situation the curl of the vector potential (i.e., the magnetic force) would always be
tangent to concentric circles having a central axis as their common normal, and it could vary
with distance from the origin along, and in the plane normal to, this common central axis. The
magnetic field would accordingly circulate about the disk’s axis, and to produce this would
require something like a closed solenoid that coils around the disk’s perimeter.

17 1f, that is, we consider them to be exact and not just approximations that are useful for nearly
homogeneous magnetic fields.

18 Certainly the magnetic field is also (trivially, because constant) symmetric about the axis,
but we have already seen that this alone will not guarantee the absence of emf (since A, also
produces B): in addition, the originating vector potential must circulate symmetrically.

19 For h equal to Bp, with B constant, this reduces to A.n(equation (14)).

20 This claim in respect to axes of magnetization is not altogether obvious, though Helmholiz
certainly recognized it (perhaps as an implication of the possibility of replacing magnetization
with closed, bounding currents). It can be demonstrated, as follows. Consider an object spinning
with angular velocity  about the z axis and with its center of rotation located along that axis
at a distance 4 from the origin. At the origin place a magnetic dipole whose axis also lies
along z. The velocity of an arbitrary point r in the object, and the vector potential at that point
will be:

v = we, X (xe, -+ ye,)

A:Vxe—Z
p

From these we easily discover:

T -
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And the corresponding ‘Helmholtz’ force becomes:

2
F=vx(VxA)—V(y-A)=vx (VX 13)47(”—3)
r r

We thereby find that v x (V x A) and V(v - A) are equal to one another, which reduces the
force to zero.
21 Buchwald (1985, 1994) and Darrigol (1993a, 2000).
22 Buchwald (1994, pp. 25-27) for the forces that arise among linear circuits.
 Helmholtz (1874, p. 717) gives the potential for linear circuits, and extends it to three-
dimensional ones on pp. 730-731. Helmholtz (1870, p. 568) gives the general expression for
the first time.
** Helmholtz (1874, p. 744).
2% Helmholtz (1870, p. 568).
*6 Helmholtz (1874, pp. 742-745).
%7 Note that the factor of 1 /2 disappears on taking the differential. The factor emerges in the first
place because otherwise the contribution to the potential from C - C'd*rd*»" would be counted
twice, assuming both integrals to extend over all space. In taking the differential, however, the
integration over r is dropped, and the factor of 1/2 consequently vanishes. Formally, the factor
disappears on taking the differential because the total potential, P, is symmetric in the product
c.C.
28 See Darrigol (2000, Appendix 5), which indicates that Helmholtz final’s result can be obtained
by calculating the convective derivative of the vector potential U under the requirement that
the integral of the potential around a curve remains constant under a virtual displacement, i.e.,
that 8, § U - dr must vanish. Helmholtz reasoned entirely in terms of a differential element by
considering explicitly both the change in the value of a vector that is seen by a point fixed
in the element, and the change in the element’s length. He did not examine the value of a
curve-integral during a deformation.
%% Because the variation of a differential element of length is equal to the difference between
the variations of its endpoints.
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